cho đường thẳng x-y+2=0 A(2;2) Dd(A)=A' tìm A'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hai đường thẳng y=-3x+2 và y=ax-2 song song với nhau thì
\(\left\{{}\begin{matrix}a=-3\\2\ne-2\left(đúng\right)\end{matrix}\right.\)
=>a=-3
b: Để hai đường thẳng y=-3x+2 và y=ax-2 cắt nhau thì \(a\ne-3\)
c: Thay x=1 và y=0 vào y=ax-2, ta được:
a*1-2=0
=>a-2=0
=>a=2
(d) nhận \(\left(1;1\right)\) là 1 vtpt nên d' nhận \(\left(1;-1\right)\) là 1 vtpt
Phương trình d' có dạng: \(x-y+c=0\)
Đường tròn tâm \(I\left(2;-1\right)\) bán kính \(R=3\)
Áp dụng Pitago: \(d\left(I;d'\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=2\sqrt{2}\)
Theo công thức khoảng cách:
\(d\left(I;d'\right)=\frac{\left|2+1+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=2\sqrt{2}\)
\(\Leftrightarrow\left|c+3\right|=4\Rightarrow\left[{}\begin{matrix}c=1\\c=-7\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y-1=0\\x-y-7=0\end{matrix}\right.\)
1, PT hoành độ giao điểm: \(2x+4=-x+1\Leftrightarrow x=-1\Leftrightarrow y=0\)
\(\Leftrightarrow A\left(-1;0\right)\)
Vậy \(A\left(-1;0\right)\) là tọa độ giao điểm 2 đths
2, Đt cần tìm //(d1)\(\Leftrightarrow a=2;b\ne4\)
Đt cần tìm đi qua M(-1;3) nên \(-a+b=3\Leftrightarrow-2+b=3\Leftrightarrow b=5\left(tm\right)\)
Vậy đths là \(y=2x+5\)
3, PT giao điểm d1 với trục hoành là \(y=0\Leftrightarrow2x+4=0\Leftrightarrow x=-2\Leftrightarrow B\left(-2;0\right)\)
PT giao điểm d2 với trục hoành là \(y=0\Leftrightarrow-x+1=0\Leftrightarrow x=1\Leftrightarrow C\left(1;0\right)\)
Do đó \(BC=\left|-2\right|+\left|1\right|=3;OA=\left|-1\right|=1\)
Vậy \(S_{ABC}=\dfrac{1}{2}OA\cdot BC=\dfrac{3}{2}\left(đvdt\right)\)
Bài I (3,0 điểm) Cho hai biểu thức A= x−9 và B= 3 + 2 +x−5 x−3 với x 0,x 9.
x−3 x−3 x+3 x−9
1) Khi x=81, tính giá trị của biểu thức A.
2) Rút gọn biểu thức B.
3) Tìm x để A = 5.
4) Với x 9, tìm giá trị nhỏ nhất của biểu thức P AB= .
giải giúp nốt cho minh luon nhe
Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$
Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$
$M$ là trung điểm của $AB$ nên:
\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)
\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)
Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$
Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$
Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$
$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:
$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$
Khoảng cách AM là nhỏ nhất khi và chỉ khi M là hình chiếu vuông góc của A lên \(\Delta\)
Gọi d là đường thẳng qua A và vuông góc \(\Delta\Rightarrow\) d nhận \(\left(1;-1\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)
M là giao điểm của d và \(\Delta\) nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x+y-2=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)
a) Ta có (d) đi qua điểm A(1;2006), nên thay x= 1, y = 2006 vào (d):
=> 2006 = 1 + m
⇔ m = 2005
Vậy m = 2005 là giá trị cần tìm
b) Ta có:
x-y-2 = 0 ⇔ y = x - 2
Để (d) // y = x-2 Thì:
\(\left\{{}\begin{matrix}1=1\left(\text{Luôn đúng}\right)\\m\ne-2\end{matrix}\right.\)
Vậy m ≠ -2 thì (d)// x - y - 2 = 0
c) Ta có:
\(\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}=1\)
⇔ \(\frac{y}{\sqrt{2}}=1-\frac{x}{\sqrt{2}}\)
⇔ y = \(\sqrt{2}\left(1-\frac{x}{\sqrt{2}}\right)\)
⇔ y = \(\sqrt{2}-x\)
⇔ y = -x + \(\sqrt{2}\)
Để (d) \(\equiv\) y= -x + \(\sqrt{2}\) Thì:
\(\left\{{}\begin{matrix}1=-1\left(\text{vô lý}\right)\\m=\sqrt{2}\end{matrix}\right.\)
vậy (d) không thể trùng với y = -x +\(\sqrt{2}\)
(có thể do đề sai)
* Chúc bạn học tốt*
Ta có \(A'=d\left(A,d\right)=\dfrac{\left|2-2+2\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\) (tạm thời mình dịch đề như thế nhé)