K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

Chọn đáp án B.

1 tháng 9 2017

Chọn đáp án B

8 tháng 4 2017

Chọn B

Tập xác định D =  ℝ \{1}

Ta có 

Do đó hàm số nghịch biến trên đoạn [2;3]

Suy ra 

Vậy có 1 giá trị nguyên dương của m.

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Lời giải:
Để $(m^2-4)x=m(m-2)$ có nghiệm duy nhất thì $m^2-4\neq 0$

$\Leftrightarrow (m-2)(m+2)\neq 0$
$\Leftrightarrow m\neq \pm 2$
Mà $m$ nguyên và $m\in [-5;5]$ nên $m\in\left\{-5; -4; -3; -1; 0; 1;3;4;5\right\}$

17 tháng 12 2023

Để tìm số giá trị nguyên của m trong khoảng [-10;10] sao cho giá trị lớn nhất của hàm số y = -x^4 + 4x - m trên đoạn [-1;3] nhỏ hơn 10, chúng ta cần thực hiện các bước sau:

 

1. Tìm giá trị lớn nhất của hàm số y = -x^4 + 4x - m trên đoạn [-1;3].

2. Kiểm tra xem giá trị lớn nhất của hàm số có nhỏ hơn 10 hay không.

3. Đếm số giá trị nguyên của m trong khoảng [-10;10] thỏa mãn điều kiện trên.

 

Bước 1: Tìm giá trị lớn nhất của hàm số y = -x^4 + 4x - m trên đoạn [-1;3].

Để tìm giá trị lớn nhất, chúng ta có thể lấy đạo hàm của hàm số và giải phương trình đạo hàm bằng 0.

 

y' = -4x^3 + 4

 

Để tìm giá trị của x khi đạo hàm bằng 0, giải phương trình:

 

-4x^3 + 4 = 0

 

X^3 - 1 = 0

 

( x - 1)( x^2 + x + 1) = 0

 

Phương trình có 2 nghiệm: x = 1 và x^2 + x + 1 =0 (phương trình bậc 2).

 

Bước 2: Kiểm tra giá trị lớn nhất của hàm số có nhỏ hơn 10 hay không.

Để kiểm tra giá trị lớn nhất của hàm số, chúng ta có thể thay x = 1 vào hàm số:

 

y = - 1^4(1) - m = 3 - m

 

Điều kiện y < 10:

 

3 - m < 10

 

- m < 7

 

m > -7

 

Bước 3: Đếm số giá trị nguyên của m trong khoảng [-10;10] thỏa mãn điều kiện trên.

Trong khoảng [-10;10], có 17 giá trị nguyên. Tuy nhiên, chúng ta chỉ quan tâm đến các giá trị m > -7.

 

Vậy, có 17 - 7 = 10 giá trị nguyên của m trong khoảng [-10;10] thỏa mãn điều kiện y < 10.

18 tháng 10 2018

10 tháng 10 2018

9 tháng 2 2019


9 tháng 9 2017

Nếu  m = 0  thì phương trình trở thành  1 = 0 : vô nghiệm.

Khi  m ≠ 0 , phương trình đã cho có nghiệm khi và chỉ khi

∆ = m 2 - 4 m ≥ 0 ⇔ m ≤ 0 m ≥ 4

Kết hợp điều kiện  m ≠ 0 , ta được  m < 0 m ≥ 4

Mà m Z và m [−10; 10] m {−10; −9; −8;...; −1} {4; 5; 6;...; 10}.

Vậy có tất cả 17 giá trị nguyên m thỏa mãn bài toán.

Đáp án cần chọn là: A

5 tháng 3 2019

Dựa vào BBT, ta thấy phương trình có nghiệm duy nhất 

Ta có y = e x  là hàm  đồng biến trên ℝ  và  y = e x > 0 với mọi x ∈ ℝ  có đồ thị  (C)(xem hình 1).

Do đó:

= Nếu m < 0 thì y = m(x+1) là hàm số nghịch biến trên , có đồ thị là một đường thẳng luôn qua điểm (-1;0)  nên luôn cắt đồ thị (C):   y = e x  tại duy nhất một điểm.

= Nếu m = 0 phương trình vô nghiệm (do  y = e x > 0).

= Nếu m > 0 để phương trình có duy nhất một nghiệm khi và chỉ khi đường thẳng 

 là tiếp tuyến của (C) (như hình 2)

11 tháng 3 2019

+) Phương trình ban đầu có nghiệm khi và chỉ khi phương trình bậc hai ẩn t có nghiệm dương.

Cách giải: