Tìm x để các số 2; 8; x; 128 theo thứ tự đó lập thành một cấp số nhân.
A.x = 14
B. x = 32
C. x= 64
D. x= 68
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho biểu thức A=x-2/x+5
a)Tìm các số nguyên x để A là phân số
b)Tìm các số nguyên x để A là số nguyên
a, để x-2/x-5 là phân số thì x-2/x-5 là phân số tối giản
suy ra x-2 không chia hết cho x+5
vậy x thuộc Z
b, để x-2/x+5 là số nguyên thì x-2 chia hết cho x+5
x-2=x+5-7
suy ra x+5-7chia hết cho x+5
mà x+5 chia hết cho x+5 nên : -7 chia hết cho x+5
vậy x=
\(A=\frac{x-2}{x+5}\)
a) Để A là phân số => \(x+5\ne0\)=> \(x\ne-5\)
b) \(A=\frac{x-2}{x+5}=\frac{x+5-7}{x+5}=1-\frac{7}{x+5}\)
Để A là số nguyên => \(\frac{7}{x+5}\)là số nguyên
=> \(7⋮x+5\)
=> \(x+5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
x+5 | -7 | -1 | 1 | 7 |
x | -12 | -6 | -4 | 2 |
Vậy x thuộc các giá trị trên thì A là số nguyên
cau a.de A la phan so thi x e z va x khac -5 cau b:ta co x-2/x+5=x+5-7/x+5 vi x+5 chia het cho x+5 nen 7 chia het cho x+5 suy ra x+5 e B(7)={7,-7,1,-1} neu x+5=-7 thi x = -12 x+5=7 thi x=2 x+5=1 thi x=-4 x+5=-1 thi x=-6
I don't now
mik ko biết
sorry
......................
1)\(4n+3⋮n-2\)
\(\Leftrightarrow4n+3=4\left(n-2\right)+11\)
\(\Rightarrow4\left(n-2\right)⋮n-2\)\(\Rightarrow n-2⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\in\left\{\pm1;\pm11\right\}\)
\(\Rightarrow n\in\left\{3;1;13;-9\right\}\)
2)\(xy+5x+y+10=0\)
\(\Leftrightarrow x\left(y+5\right)+y+5+5=0\)
\(\Leftrightarrow x\left(y+5\right)+\left(y+5\right)=-5\)
\(\Leftrightarrow\left(x+1\right).\left(y+5\right)=-5\)
x+1 | -1 | -5 | 1 | 5 |
y+5 | 5 | 1 | -5 | -1 |
x | -2 | -6 | 0 | 4 |
y | 0 | -4 | -10 | -6 |
3)
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)
\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)
Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)
\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)
Chọn B
Ta có 8= 2. 4 nên công bội q = 4
Do đó, x = 2.q2 = 2. 42 = 32