K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Ta có: a + b ; b +c ; c + a TLN với 3,8,12

=> (a + b).3 = (b + c). 8 = (c + a). 12

=> \(\frac{a+b}{\frac{1}{3}}=\frac{b+c}{\frac{1}{8}}=\frac{c+a}{\frac{1}{12}}\) và a+b+c = 26

Áp dụng tính chất dãy tỉ số bằng nhau

Ta có: \(\frac{a+b}{\frac{1}{3}}=\frac{b+c}{\frac{1}{8}}=\frac{c+a}{\frac{1}{12}}\)=\(\frac{a+b+b+c+c+a}{\frac{1}{3}+\frac{1}{8}+\frac{1}{12}}\)=\(\frac{2a+2b+2c}{\frac{13}{24}}\)=\(\frac{2.26}{\frac{13}{24}}=\frac{52}{\frac{13}{24}}=96\)

\(\frac{a+b}{\frac{1}{3}}=96\Rightarrow a+b=32\)

\(\frac{b+c}{\frac{1}{8}}=96\Rightarrow b+c=12\)

\(\frac{c+a}{\frac{1}{12}}=96\Rightarrow c+a=8\)

Ta có: a + b + c = 26

mà a + c = 8

=> b = 26 - 8 = 18

Vậy b = 18

@Nguyễn Huy Tú; @Trương Hồng Hạnh, @soyeon_Tiểubàng giải

15 tháng 7 2015

a) NHận thấy:

102:12=8 dư 6

Vậy q=8;r=6 để 102=12x8+6

b)  Nhận thấy:  

a=12x3+5

a=36+5

a=41

c)  không biết làm

d)  Ta có:

51-0=bxq

51=bxq

Mà 51=17x3

   =1x51

Suy ra b=17 thì q=3

           q=17 thì b=3

b=51 thì q=1

q=51 thì b=1

 

15 tháng 7 2015

a) Từ \(a=b.q+r\) nên \(q=a:b\) và r là số dư của phép chia này

 q = 102 : 12 = 8 (dư r = 6)

b), c) d) tương tự thế mà làm nhé !

9 tháng 9 2023

a) \(\left\{{}\begin{matrix}UCLN\left(a;b\right)=64\\a+b=256\left(1\right)\end{matrix}\right.\)  \(\left(a;b\inℕ^∗\right)\)

Nên ta đặt \(\left\{{}\begin{matrix}a=64x\\b=64y\end{matrix}\right.\) \(\left(x;y\inℕ^∗\right)\)

\(\left(1\right)\Rightarrow64x+64y=256\)

\(\Rightarrow64\left(x+y\right)=256\)

\(\Rightarrow x+y=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1.64=64\\b=3.64=192\end{matrix}\right.\)  \(\left(thỏa.vì.a+b=256\right)\)

Vậy \(\left(a;b\right)=\left(64;192\right)\)

b) \(\left\{{}\begin{matrix}UCLN\left(a;b\right)=48\\a+b=13824\left(1\right)\end{matrix}\right.\)  \(\left(a;b\inℕ^∗\right)\)

Nên ta đặt \(\left\{{}\begin{matrix}a=48x\\b=48y\end{matrix}\right.\) \(\left(x;y\inℕ^∗\right)\)

\(\left(1\right)\Rightarrow48x+48y=13824\)

\(\Rightarrow48\left(x+y\right)=13824\)

\(\Rightarrow x+y=288\)

\(\Rightarrow\left\{{}\begin{matrix}x=200\\y=88\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=48.200=9600\\b=48.88=4224\end{matrix}\right.\) \(\left(thỏa.vì.a+b=13824\right)\)

Vậy \(\left(a;b\right)=\left(9600;4224\right)\)

9 tháng 9 2023

b,Theo bài ra ta có:

 a + b =13824

 ƯCLN (a,b)=48

*Vì ƯCLN (a,b) =48   => a=48x   (x < y, ƯCLN (x,y ) = 1)

                                        b=48y

*Mà a + b = 13824

=> 48x + 48y = 13824

     48(x + y)   = 13824 : 48

          x  + y    =  288

*Ta phải tìm hai số x,y thỏa mãn các điều kiện :

 x < y

UCLN (x,y) = 1

x + y =4

=>Với x=1 thì y=3

Lập bảng:

x=1

y=3

a=288 . 1 = 288 thuộc N

b=288 . 3 = 864 thuộc N

Vậy a=288,b=864.

 

a,Theo bài ra ta có:

 a + b =256

 ƯCLN (a,b)=64

*Vì ƯCLN (a,b) =64   => a=64x   (x < y, ƯCLN (x,y ) = 1)

                                        b=64y

*Mà a + b = 256

=> 64x + 64y = 256

     64(x + y)   = 256 : 64

          x  + y    =  4

*Ta phải tìm hai số x,y thỏa mãn các điều kiện :

 x < y

UCLN (x,y) = 1

x + y =4

=>Với x=1 thì y=3

Lập bảng:

x=1

y=3

a=18 . 1 = 18 thuộc N

b=18 . 3 = 54 thuộc N

Vậy a=18,b=54.

 

18 tháng 11 2021

- Ta có: a ≥ b ( a,b ∈ N )

ƯCLN ( a, b) = 16

⟹ a chia hết cho 16 ⟹ a = 16.m

⟹ b chia hết cho 16 ⟹ b = 16. n

(m, n là thương; m,n ∈ N, m ≥ n)

ƯCLN(m,n) = 1

⟹ a . b = ƯCLN.BCNN

mà a = 16. m

      b = 16. n

Thay số: 16 . m . 16 . n = 16 . 240

               16. m . 16. n = 3840

               256. m. n = 3840

⟹ m. n = 3840 : 256 = 15

Ta có bảng sau :

m.........
n.........
a.........
b.........

⟹ Vậy (a,b) ∈ { (... ...) ; (... , ....)}

15 giờ trước (21:40)

Ngu thế

16 tháng 6 2015

a+b=-10

=>(a+b)2=100

=>a2+2ab+b2=100

=>a2+b2=100-2ab=100-2.24=52

=>a2+b2-2ab=52-2ab

=>(a-b)2=52-2.24=4

=>a-b=+-4

*)a-b=4

=>a=(4-10):2=-3

b=-7

*)a-b=-4

=>a=(-4-10):2=-7

b=-3

Ta có:140=22.5.7

Mà a-b=7

Thử các trường hợp ta không tìm thấy ab thõa mãn

16 tháng 6 2015

cho (a;b) là d => a = md ; b= nd

với m;n \(\in N^{\cdot}\) và (a;b) = 1

a -b \(\Leftrightarrow\) d(m-n) = 7 ; a > b => m > n       [1]

từ \(ab=\left(a;b\right).\left[a;b\right]\Rightarrow\left[a;b\right]=\frac{ab}{\left(a;b\right)}\frac{mnd^2}{d}=dmn\)   [2]

thừ [1] và [2] => d thuộng ƯC(7;140)  mà ƯCLN( 7;140) = 7

=> d thuộc Ư(7)

thay d ta thấy chỉ có 7 là thik hợp

d = 7 thì m-n = 1 => m = 5; n = 4 ; a=35 ; d= 28