Cho hàm số y=f(x) có đạo hàm liên tục đoạn [0;1] thỏa mãn f(0)=0,f(1)=1 và ∫ 0 1 1 + x 2 [ f ' ( x ) ] 2 d x = 1 l n 2 . Tích phân ∫ 0 1 f ( x ) 1 + x 2 d x bằng
A. 1 2 ln 2 1 + 2 .
B. 2 - 1 2 ln 2 1 + 2 .
C. 1 2 ln 1 + 2 .
D. 2 - 1 ln 1 + 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
Ta có: f ( 0 ) = 1 ⇒ 1 = 3 C
Xét hàm trên [-2;1]
Ta có
Nhận thấy f ' ( x ) > 0 ∀ x ∈ ℝ ⇒ Hàm số đồng biến trên (-2;1)
Suy ra m a x - 2 ; 1 f ( x ) = f ( 1 ) = 16 3
Chọn đáp án C.