K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2016

x.y-x.z+y.z-z^2+1=0

x.y-x.z+y.z-z^2   =-1

x(y-z)+z(y-z)       =-1

(x+z)(y-z)            =-1

=> x và y đối nhau

=> x+y=0

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

3 tháng 8 2017

Có vẻ đề sai

NV
29 tháng 4 2021

Do \(x\in\left[-1;2\right]\Rightarrow\)\(\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2\le x+2\)

Tương tự: \(y^2\le y+2\) ; \(z^2\le z+2\)

Cộng vế: \(x^2+y^2+z^2\le x+y+z+6=6\) (đpcm)

Mặt khác \(x;y;z\in\left[-1;2\right]\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+1\ge0\)

\(\Leftrightarrow2xyz+2\ge-2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2xyz+2\ge\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow2xyz+2\ge x^2+y^2+z^2\) (đpcm)

26 tháng 8 2021

áp dụng bất đẳng thức Svac-xơ là ra luôn nha bạn

chứng minh bạn có thể tìm hiểu thêm

tick mình nha

2 tháng 8 2017

Theo giả thiết ta có \(\sqrt{x}+\sqrt{y}-\sqrt{z}=0\)

                            \(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{z}\)

                            \(\Leftrightarrow x+y+2\sqrt{xy}=z\)

                             \(\Leftrightarrow x+y-z=-2\sqrt{xy}\)

         Tương tự \(x+z-y=2\sqrt{xz}\)     ;    \(y+z-x=2\sqrt{yz}\)

    Suy ra  \(\frac{1}{x+y-z}+\frac{1}{x+z-y}+\frac{1}{y+z-x}=\frac{1}{-2\sqrt{xy}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{yz}}=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{2\sqrt{xyz}}=0\)

   Vậy suy ra ĐPCM , bạn ghi nhầm đề đúng ko

2 tháng 8 2017

@Trần Huỳnh Thanh Long sai đề ở đâu ạ

3 tháng 4 2018

Ta có : \(x-2xy+y=0\)

\(\Leftrightarrow x-y\left(2x-1\right)=0\)

\(\Leftrightarrow2x-2y\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)-2y\left(2x-1\right)=-1\)

\(\Leftrightarrow\left(1-2y\right)\left(2x-1\right)=-1\)

Sau đó thì bạn tự làm nhé. Dễ mà.

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}1-2y=1\\2x-1=-1\end{cases}}\\\hept{\begin{cases}1-2y=-1\\2x-1=1\end{cases}}\end{cases}}\)