K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2020

\(\overrightarrow{AB}=\left(-4;2\right)\)

Gọi \(\overrightarrow{A'B'}=\left(a;b\right)\) , do A' là ảnh của A, B' là ảnh của B trong cùng phép vị tự nên \(\overrightarrow{A'B'}\) cũng là ảnh của \(\overrightarrow{AB}\) qua phép vị tự đó

\(\Rightarrow\left\{{}\begin{matrix}a-1=4\left(-4-1\right)\\b-1=4\left(2-1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-19\\b=5\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{A'B'}=\left(-19;5\right)\)

7 tháng 8 2019

A B → = − 2 ; − 1 A C → = − 3 ; − 2 ⇒ A B → − A C → = − 2 − − 3 ; − 1 − − 2 = 1 ; 1 .

Đáp án B

15 tháng 10 2017

7 tháng 4 2021

Câu này đề Hà Tĩnh 2016 - 2017.

Tham khảo:

Đáp án và đề thi HSG toán 10 sở GD&ĐT Hà Tĩnh 2016-2017

NV
13 tháng 12 2021

\(\overrightarrow{AB}=\left(-1;1\right)\) nên pt AB có dạng:

\(1\left(x-2\right)+1\left(y-3\right)=0\Leftrightarrow x+y-5=0\)

Do I thuộc AB nên tọa độ có dạng: \(I\left(a;5-a\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(2-a;a-2\right)\\\overrightarrow{IB}=\left(1-a;a-1\right)\\\overrightarrow{IC}=\left(-1-a;a-10\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{IA}+3\overrightarrow{IB}+5\overrightarrow{IC}=\left(-9a;9a-55\right)\)

\(\Rightarrow\left|\overrightarrow{IA}+3\overrightarrow{IB}+5\overrightarrow{IC}\right|=\sqrt{\left(9a\right)^2+\left(55-9a\right)^2}\ge\sqrt{\dfrac{1}{2}\left(9a+55-9a\right)^2}=\dfrac{55}{\sqrt{2}}\)

Dấu "=" xảy ra khi \(9a=55-9a\Rightarrow a=\dfrac{55}{18}\Rightarrow I\left(\dfrac{55}{18};\dfrac{35}{18}\right)\)

Kiểm tra lại tính toán

26 tháng 1 2021

Gọi G là trọng tâm tam giác ABC

\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất

\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung

\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)

Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)

NV
23 tháng 12 2020

Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)

3 điểm M;A;B thẳng hàng khi:

\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)

\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)