Cho 2018 số tự nhiên là a1,a2,....a2018 đều là các số lớn hơn 1 thỏa mãn điều kiện 1/a21;1/a22;.....;1/a22018=1.Chứng minh trong 2018 số này ,ít nhất sẽ có 2 số bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2018 số này không tồn tại 2 số nào bằng nhau.
Giả sử \(a_1>a_2>...>a_{2018}\)
\(\Rightarrow a_{2018}\ge2,a_{2017}\ge3,...,a_1\ge2019\)
\(\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2018}^2}\le\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}< 1\)(mâu thuẫn với giả thiết)
=> điều giả sử không xảy ra=>đpcm
Giả sử trong 2018 số đó chẳng có số nào bằng nhau và tất cả các số đều lớn hơn 1. Thế thì:
1a21+1a22+1a23+…+1a220181a12+1a22+1a32+…+1a20182≤122+132+142+…+120192≤122+132+142+…+120192
Cơ mà:
122+132+142+…+120192122+132+142+…+120192<11.2+12.3+13.4+…+12018.2019<11.2+12.3+13.4+…+12018.2019
=1–12019<1=1–12019<1 (theo phần a)
Thế nhưng đề bài cho 1a21+1a22+1a23+…+1a22018=11a12+1a22+1a32+…+1a20182=1 (vô lý)
Vậy thể nào trong 2018 số tự nhiên đó cũng có 2 số bằng nhau
Đáp án B
Phương pháp: Xét các trường hợp:
TH1:
TH2:
TH3:
Cách giải:
TH1: , ta có 0 + 5 = 1 + 4 = 2 + 3 = 5
- Nếu (a1;a2) = (0;5) => có 1 cách chọn (a1a2)
Có 2 cách chọn (a3a4), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.
Tương tự (a5a6) có 2 cách chọn.
=>Có 8 số thỏa mãn.
- Nếu (a1;a2) ≠ (0;5) =>có 2 cách chọn (a1a2),2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.
Có 2 cách chọn (a3a4), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.
Tương tự (a5a6) có 2 cách chọn.
=>Có 32 số thỏa mãn.
Vậy TH1 có: 8 + 21 = 40 số thỏa mãn.
TH2: ta có 0+6=1+5=2+4=6
Tương tự như TH1 có 40 số thỏa mãn.
TH3: , ta có 1+6-2+5=3+4=7
Có 3 cách chọn (a1a2) , hai số này có thể đổi chỗ cho nhau nên có 6 cách chọn.
Tương tự có 4 cách chọn (a3a4) và 2 cách chọn (a5a6).
Vậy TH3 có 6.4.2 = 48 số thỏa mãn.
Vậy có tất cả 40 +40 +48 = 128 số có 6 chữ số khác nhau thỏa mãn
Để viết một số có 6 chữ số khác nhau bất kì có 6.6.5.4.3.2 = 4320 số.
Vậy p = 128 4320 = 4 135