Cho đường tròn (C): x 2 + y 2 + 2x + 2y - 2 = 0 và điểm M(-1;1). Phương trình tiếp tuyến của đường tròn tại M là:
A. y - 1 = 0
B. y + 1 = 0
C. x - 1 = 0
D. x + 1 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT đường tròn (x - 3)2 + (y + 1)2 = 4
Vậy đường tròn (C) có tâm I (3 ; -1) và bán kính bằng 2
\(\overrightarrow{IA}=\left(-2;0\right)\)⇒ IA = 2 ⇒ A thuộc đường tròn
\(\overrightarrow{IB}=\left(-2;4\right)\) ⇒ IB > 2 ⇒ B nằm ngoài đường tròn
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)
a. Đường thẳng cắt đường tròn tại 2 điểm pb khi:
\(d\left(I;d\right)< R\Leftrightarrow\dfrac{\left|\sqrt{2}-2m+1-\sqrt{2}\right|}{\sqrt{2+m^2}}< 3\)
\(\Leftrightarrow\left(2m-1\right)^2< 9\left(m^2+2\right)\)
\(\Leftrightarrow8m^2+4m+17>0\) (luôn đúng)
Vậy đường thẳng luôn cắt đường tròn tại 2 điểm pb với mọi m
b. \(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}R^2.sin\widehat{AIB}\le\dfrac{1}{2}R^2\) do \(sin\widehat{AIB}\le1\)
Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\Rightarrow\Delta IAB\) vuông cân tại I
\(\Rightarrow d\left(I;d\right)=\dfrac{R}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2m-1\right|}{\sqrt{m^2+2}}=\dfrac{3}{\sqrt{2}}\)
\(\Leftrightarrow m^2+8m+16=0\Rightarrow m=-4\)
Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=3\)
a. \(\overrightarrow{IM}=\left(0;2\right)\Rightarrow IM=\sqrt{0^2+2^2}=2< R\Rightarrow\) M nằm trong đường tròn
b. \(d\left(I;d\right)=\dfrac{\left|2-\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=2\sqrt{2}< 3\Rightarrow d\) cắt đường tròn tại 2 điểm
c. Khoảng cách giữa 2 điểm trên đường tròn là lớn nhất khi chúng nằm ở 2 mút đường kính
\(\Rightarrow\) d' đi qua tâm I
Do d' vuông góc d nên nhận (1;1) là 1 vtpt
Phương trình: \(1\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow x+y-1=0\)
Đáp án: A
Ta có:
(C): x 2 + y 2 + 2x + 2y - 2 = 0 ⇔ (x + 1 ) 2 + (y + 1 ) 2 = 4 ⇒ I(-1;-1)
Phương trình tiếp tuyến của đường tròn tại M là đường thẳng đi qua M và nhận vector IM = (0;2) làm vecto pháp tuyến: 0.(x + 1) + 2.(y - 1) = 0 ⇔ y - 1 = 0