K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Hai đường chéo AC và BD vuông góc với nhau tại I.

- Đường thẳng AB có hệ số góc bằng 2, do đó ta có

tgα = 2 ⇒ α = 63 ° 26 ' (tính trên máy tính bỏ túi).

Suy ra ∠ (ABD) ≈ 63 ° 26 '

Tam giác ABD cân, nên cũng có  ∠ (ADB) ≈  63 ° 26 '

Từ đó suy ra  ∠ (BAD) =  180 °  - 2.  63 ° 26 '  ≈  53 ° 8 '

19 tháng 10 2018

Chọn C

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

Độ dài ABCD là sao bạn?

28 tháng 1 2023

a) 

28 tháng 1 2023

sorry bạn nha mik chụp ảnh bị lỗi

\(\overrightarrow{AB}=\left(-3;7\right)\)

\(\overrightarrow{DC}=\left(1-x_D;5-y_D\right)\)

Để ABCD là hbh thì 

\(\left\{{}\begin{matrix}1-x_D=-3\\5-y_D=7\end{matrix}\right.\Leftrightarrow D\left(2;-2\right)\)

a: Khi x=0 thì y=4

Khi y=0 thì -2x+4=0

hay x=2

b: Gọi điểm cần tìm là A(x;x)

Thay y=x vào y=-2x+4, ta được:

x=-2x+4

=>x=4

Vậy: Điểm cần tìm là A(4;4)

20 tháng 12 2021

1, Gọi tọa độ điểm D(x;y)

Ta có:\(\overrightarrow{AB}\left(8;1\right)\)

\(\overrightarrow{DC}\left(1-x;5-y\right)\)

Tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow1-x=8;5-y=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)

Vậy tọa độ điểm D(-7;4)

20 tháng 12 2021

câu 2 tương tự như câu 1 nha bạn

23 tháng 8 2018

Gọi C= (x, y). Ta có  A B → = 2 ; 1 B C → = x − 3 ; y .

Vì ABCD là hình vuông nên ta có A B → ⊥ B C → A B = B C  

⇔ 2 x − 3 + 1. y = 0 x − 3 2 + y 2 = 5 ⇔ y = 2 3 − x 5 x − 3 2 = 5 ⇔ y = 2 3 − x x − 3 2 = 1 ⇔ x = 4 y = − 2  hoặc x = 2 y = 2 .

Với C 1 4 ; − 2  ta tính được đỉnh D 1 2 ; − 3 : thỏa mãn.

Với C 2 2 ; 2  ta tính được đỉnh D 2 0 ; 1 : không thỏa mãn.

Chọn B.

5 tháng 2 2019

Chọn D

Trên cạnh AB, AC , AD của tứ diện ABCD lần lượt có các điểm B', C', D'. Áp dụng công thức tỷ số thể tích ta có

Từ giả thiết 

áp dụng bất đẳng thức AM- GM ta có

Do thể tích ABCD cố định nên thể tích AB'C'D' nhỏ nhất 

=> (B'C'D') song song với (BCD) và đi qua điểm  B'

suy ra vectơ pháp tuyến của mặt phẳng (B'C'D')  là:

Vậy phương trình (B'C'D') là: