K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Hàm số y = sinx đồng biến trên khoảng: \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\)

Chọn C

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     y = sinx

-        Khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{7\pi }}{2}} \right)\)

+ Vẽ đồ thị hàm số:

+ Đồng biến trên khoảng \(\left( { - \frac{{9\pi }}{2}; - 4\pi } \right)\)

+ Nghịch biến trên khoảng; \(\left( { - 4\pi ; - \frac{{7\pi }}{2}} \right)\)

-        Khoảng \(\left( {\frac{{21\pi }}{2};\frac{{23\pi }}{2}} \right)\)

+ Vẽ đồ thị hàm số:

+ Đồng biến trên khoảng: \(\left( {11\pi ;\frac{{23\pi }}{2}} \right)\)

+ Nghịch biến trên khoảng: \(\left( {\frac{{21\pi }}{2};11\pi } \right)\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Vẽ đồ thị:

\(3\sin x + 2 = 0\) trên đoạn \(\left( { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right)\) có 5 nghiệm

b)     Vẽ đồ thị:

\(\cos x = 0\) trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) có 6 nghiệm 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Hàm số y = sinx nhận giá trị bằng 1

-        Vẽ hàm số y = sinx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)

-        Vẽ hàm số y = 1

-        Lấy giao điểm của hai hàm số y = sinx và y = 1 là A, B,...

b)     Hàm số y = sinx nhận giá trị bằng 0

-        Vẽ hàm số y = sinx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)

-        Vẽ hàm số y = 0

-        Lấy giao điểm của hai hàm số y = sinx và y = 0 là A, B, C, D, E,...

c)     Hàm số y = cosx nhận giá trị bằng – 1

-        Vẽ hàm số y = cosx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)

-        Vẽ hàm số y = - 1

-        Lấy giao điểm của hai hàm số y = cosx và y = - 1 là A, B,...

d)     Hàm số y = cosx nhận giá trị bằng 0

-        Vẽ hàm số y = cosx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)

-        Vẽ hàm số y = 0

-        Lấy giao điểm của hai hàm số y = cosx và y = 0 là C, D, E, F,...

 

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

Đồ thị của hàm số \(y=sin\left(x\right)\) trên đoạn \(\left[-\pi;\pi\right]\) là: 

Ta thấy đồ thị hàm số giao với đường thẳng d: \(y=\dfrac{1}{2}\) tại 2 điểm.

Do đó, phương trình \(sin\left(x\right)=\dfrac{1}{2}\) có hai giá trị \(x\in\left[-\pi;\pi\right]\) thỏa mãn 

NV
16 tháng 9 2021

\(0< \dfrac{1}{2018}< 1\)

Kẻ 1 đường thẳng nằm ngang nằm giữa \(y=0\) và \(y=1\) ta thấy cắt đồ thị tại 5 điểm trên đoạn đã cho

\(\Rightarrow\) Pt có 5 nghiệm

undefined