K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

\(d\left(I;AB\right)=\frac{\left|\frac{1}{2}+2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{\sqrt{5}}{2}\Rightarrow AD=2d\left(I;AB\right)=\sqrt{5}\)và \(AB=2AD=2\sqrt{5}\)

Do đó \(IA=IB=IC=ID=\frac{1}{2}AC=\frac{5}{2}\)

Gọi \(\omega\) là đường tròn tâm I, bán kính \(R=IA\) thế thì  \(\omega\)  có phương trình \(\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\)

Do vậy tọa độ của A, B là nghiệm của hệ :

\(\begin{cases}\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\\x-2y+2=0\end{cases}\)

Giải hệ thu được \(A\left(-2;0\right);B\left(2;2\right)\) (do A có hoành độ âm), từ đó , do I là trung điểm của AC và BD suy ra \(C\left(3;0\right);D\left(-1;-2\right)\)

27 tháng 5 2018

Gọi M là tọa độ trung điểm của cạnh  AD => M (1 ; 2) 

Gọi N ( x N ;   y N ) là tọa độ trung điểm của cạnh BC

Do I là tâm của hình chữ nhật nên I là trung điểm của MN.

Suy ra

x N = 2 x I − x M = − 3 y N = 2 y I − y M = − 2 ⇒ N − 3 ; − 2 .

Đáp án C

29 tháng 9 2019

Gọi M là tọa độ trung điểm của cạnh  AD => M (1 ; 2).

Gọi N ( x N   ;   y N   ) là tọa độ trung điểm của cạnh BC.

Do I là tâm của hình chữ nhật nên I là trung điểm của MN.

Suy ra  x N = 2 x I − x M = − 3 y N = 2 y I − y M = − 2 ⇒ N − 3 ; − 2 .

Đáp án C

NV
21 tháng 3 2021

I là trung điểm AC \(\Rightarrow C\left(2;-2\right)\)

\(\Rightarrow\overrightarrow{CM}=\left(2;-1\right)\Rightarrow\) đường thẳng BC có dạng:

\(1\left(x-2\right)+2\left(y+2\right)=0\Leftrightarrow x+2y+2=0\)

Đường thẳng AB qua A và vuông góc BC nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình AB:

\(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)

B là giao điểm AB và BC nên tọa độ là nghiệm:

\(\left\{{}\begin{matrix}x+2y+2=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(...\right)\)

I là trung điểm BD \(\Rightarrow\left\{{}\begin{matrix}x_D=2x_I-x_B=...\\y_D=2y_I-y_B=...\end{matrix}\right.\)

7 tháng 9 2018

k mk đi

ai k mk

mk k lại

thanks

7 tháng 9 2018

giải đi mình k

19 tháng 12 2019

Xét ΔABD vuông tại A có:

Giải bài tập Toán 10 | Giải Toán lớp 10

Do ABCD là hình chữ nhật tâm I nên:

AI = IC = ID = 1/2 BD = 1

ΔICD có ID = IC = DC = 1

⇒ΔICD đều ⇒ ∠(DIC) = 60o

Ta có: ∠(DIC) + ∠(AID ) = 180o⇒ ∠(AID ) = 180o- 60o= 120o

11 tháng 12 2019