K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì (d) đi qua A(1;2) và B(2;0) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=2\\2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=2\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2-a=2-\left(-2\right)=4\end{matrix}\right.\)

Vậy: (d): y=-2x+4

7 tháng 11 2017

Bài 3 làm sao v ạ?

19 tháng 10 2023

TỰ ĐI MÀ LÀM

 

16 tháng 12 2023

a: Thay x=1 và y=2 vào y=ax+b, ta được:

\(a\cdot1+b=2\)

=>a+b=2

Thay x=0 và y=1 vào y=ax+b, ta được:

\(a\cdot0+b=1\)

=>b=1

a+b=2

=>a=2-b

=>a=2-1=1

Vậy: phương trình đường thẳng AB là y=x+1

b: Thay x=-1 vào y=x+1, ta được:

\(y=-1+1=0=y_C\)

vậy: C(-1;0) thuộc đường thẳng y=x+1

hay A,B,C thẳng hàng

c: Thay x=3 và y=2 vào y=x+1, ta được:

\(3+1=2\)

=>4=2(sai)

=>D(3;2) không thuộc đường thẳng AB

d: Gọi phương trình đường thẳng (d) cần tìm có dạng là y=ax+b(b\(\ne\)0)

Vì (d) vuông góc với AB nên \(a\cdot1=-1\)

=>a=-1

=>y=-x+b 

Thay x=3 và y=2 vào y=-x+b, ta được:

b-3=2

=>b=5

vậy: (d): y=-x+5

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)

b: 

1: Thay x=-1 và y=3 vào (d), ta được:

\(2\cdot\left(-1\right)-a+1=3\)

=>-a-1=3

=>-a=4

hay a=-4

2 tháng 6 2015

a) (d) cắt (P) tại A => A thuộc d và (P)

xA= 3; A \(\in\) d=> yA = -xA\(\frac{3}{2}\) => yA = -3 - \(\frac{3}{2}\) = \(\frac{-9}{2}\)

Mặt khác, A  \(\in\) (P) => yA = axA2 => \(\frac{-9}{2}\) = a. 32 => a = \(\frac{-9}{2}\): 9 = \(\frac{-1}{2}\)

Vậy (P) có dạng y = \(\frac{-1}{2}\).x2

+) Vẽ đồ thị: 

x-2-1012
y-2\(\frac{-1}{2}\)0\(\frac{-1}{2}\)-2

(P) đí qua 4 điểm (-2;-2); (-1;\(\frac{-1}{2}\)); (0;0); (1;\(\frac{-1}{2}\)); (2;-2)

b) Phương trình hoành độ giao điểm: \(\frac{-1}{2}\).x2 = - x - \(\frac{3}{2}\)

                                               <=> -x2 + 2x + 3 = 0 

                                              <=> x = -1 hoặc x = 3 (Vì a - b + c = -1 - 2 + 3 = 0)

=> xB = -1 => yB = \(\frac{-1}{2}\).(-1)2 = \(\frac{-1}{2}\)

Vậy B (-1;\(\frac{-1}{2}\))

 

23 tháng 8 2023

Do (d1) song song với đường thẳng y = 2x nên a = 2

(d1): y = 2x + b

Thay tọa độ điểm (1; -1) vào (d) ta được:

2.1 + b = -1

⇔ b = -1 - 2

⇔ b = -3

Vậy (d1): y = 2x - 3

b) x = 0 ⇒ y = -3

*) Đồ thị:

loading...  

c) Phương trình hoành độ giao điểm của (d1) và (d2):

2x - 3 = 1/2 x + 1

⇔ 2x - 1/2 x = 1 + 3

⇔ 3/2 x = 4

⇔ x = 4 : 2/3

⇔ x = 8/3

⇒ y = 2.8/3 - 3 = 7/3

Vậy tọa độ giao điểm của (d1) và (d2) là (8/3; 7/3)

d) Ta có:

Gọi a là góc cần tính

⇒ tan(a) = 2

⇒ a ≈ 63⁰

23 tháng 8 2023

(b) và (d) bạn tự xem kiến thức vẽ rồi áp dụng công thức tan là làm được nha=)

a)

Đồ thị hàm số (d1)// đường thẳng `y=2x`

=> \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne0\end{matrix}\right.\)

=> `y=2x+b`

Do hàm số `y=2x+b` đi qua điểm `(1;-1)` nên `x=1`, `y=-1`:

`-1=2.1+b`

=> `b=-3`

Vậy hàm số `y=ax+b` là `y=2x-3`

c)

Ta có PTHĐGĐ giữa `d_1` và `d_2`:

 \(2x-3=\dfrac{1}{2}x+1\\ \Rightarrow x=\dfrac{8}{3}\Rightarrow y=\dfrac{7}{3}\)

Vậy `E=`\(\left(\dfrac{8}{3};\dfrac{7}{3}\right)\)

$HaNa$