K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

gọi n =(a;b)

=> △ có phương trình là:

a(x+2) + b(y-0)=0

⇔ ax + by + 2a =0

cos(△, d) = \(\frac{\left|1.a+3.b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+3^2}}=\frac{\sqrt{2}}{2}\)

\(\left|a+3b\right|=\sqrt{5}.\sqrt{a^2+b^2}\Leftrightarrow\left(a+3b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+6ab+9b^2=5a^2+5b^2\Leftrightarrow4a^2-6ab-4b^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=-b\left(1\right)\\a=2b\left(2\right)\end{matrix}\right.\)

từ(1) chọn a=1 => b=-2

=> △ có phương trình là: x -2y + 2 =0

từ(2) chọn b=1 => a=2

=> △ có phương trình là: 2x +1y + 4 =0

1 tháng 5 2020

9/ \(\Delta//\left(d\right)\Rightarrow\overrightarrow{n_d}=\left(1;-2\right)\)

\(\Rightarrow\left(d\right):\left(x-1\right)-2\left(y+1\right)=0\)

\(\left(d\right):x-2y-3=0\)

10/ \(\overrightarrow{BC}=\left(-6;8\right)\)

PT đường cao AA' nhận vecto BC làm vtpt

\(\Rightarrow\overrightarrow{n_{AA'}}=\overrightarrow{u_{BC}}=\left(-6;8\right)\)

\(AA':-6\left(x-1\right)+8\left(y+2\right)=0\)

\(AA'=-6x+8y+22=0\)

18/ Trong quá trình làm bài, mình rút ra kết luận sau: Nếu một đường thẳng chắn 2 trục toạ độ 2 đoạn có độ dài bằng nhau thì ptđt có hệ số góc là \(k=\pm1\)

Để mình chứng minh lại:

Đường thẳng có dạng : y= ax+b

\(\Rightarrow\) Nó cắt trục Oy tại điểm có toạ độ là \(\left(0;b\right)\)

Và cắt trục Ox tại điểm có toạ độ là \(\left(-\frac{b}{a};0\right)\)

Vì khoảng cách từ O đến từng điểm là như nhau

\(\Rightarrow\left|b\right|=\left|\frac{b}{a}\right|\Leftrightarrow\left[{}\begin{matrix}b=\frac{b}{a}\\b=-\frac{b}{a}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{u}=\left(1;1\right)\\\overrightarrow{u}=\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(d\right):x-2+y+3=0\\\left(d\right):x-2-y-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(d\right):x+y+1=0\\\left(d\right):x-y-5=0\end{matrix}\right.\)

NV
11 tháng 4 2020

14.

\(\overrightarrow{AB}=\left(-3;10\right)\Rightarrow\) đường thẳng AB nhận \(\left(10;3\right)\) là 1 vtpt

Phương trình AB:

\(10\left(x-3\right)+3\left(y+4\right)=0\Leftrightarrow10x+3y-18=0\)

16.

Do d song song denta nên d nhận \(\left(3;-2\right)\) là 1 vtpt

Phương trình d:

\(3\left(x-2\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y-4=0\)

17. Cho d vuông góc denta nên d nhận \(\left(1;-1\right)\) là 1vtpt

Phương trình d:

\(1\left(x-4\right)-1\left(y+1\right)=0\Leftrightarrow x-y-5=0\)

NV
18 tháng 4 2020

14.

\(\overrightarrow{AB}=\left(-3;10\right)\) nên pt tham số của AB là: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+10t\end{matrix}\right.\)

15.

Do d song song delta nên d nhận \(\left(2;-1\right)\) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=2t\\y=-4-t\end{matrix}\right.\)

18.

d có vtcp là (2;3) nên d nhận (3;-2) là 1 vtpt

Phương trình d:

\(3\left(x+1\right)-2\left(y-0\right)=0\Leftrightarrow3x-2y+3=0\)

19.

\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt

Phương trình d:

\(4\left(x+2\right)+3\left(y-4\right)=0\Leftrightarrow4x+3y-4=0\)

NV
1 tháng 5 2020

33.

Đường thẳng d song song \(\Delta\) nên nhận \(\left(3;-4\right)\) là 1 vtpt

\(\Rightarrow\) Nhận \(\left(4;3\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=4t\\y=3t\end{matrix}\right.\)

41.

\(\Delta_1\) nhận \(\left(2;-3m\right)\) là 1 vtpt

\(\Delta_2\) nhận \(\left(m;4\right)\) là 1 vtpt

Để 2 đường thẳng cắt nhau

\(\Leftrightarrow2.4\ne-3m^2\Leftrightarrow m^2\ne-\frac{8}{3}\) (luôn đúng)

Vậy hai đường thẳng cắt nhau với mọi m

NV
1 tháng 5 2020

21.

\(\overrightarrow{AB}=\left(-2;2\right)=-2\left(1;-1\right)\) nên pt đường thẳng AB:

\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)

\(\overrightarrow{CD}=\left(-5;0\right)=-5\left(1;0\right)\) nên pt CD có dạng:

\(0\left(x-2\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)

Giao điểm 2 đường thẳng có tọa độ là nghiệm: \(\left\{{}\begin{matrix}x+y-3=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

31.

\(\Delta_1\) nhận \(\left(m+1;-1\right)\) là 1 vtcp

\(\Delta_2\) nhận \(\left(3;-4\right)\) là 1 vtpt

Để hai đường thẳng song song:

\(3\left(m+1\right)+4=0\Rightarrow m=-\frac{7}{3}\)

NV
29 tháng 4 2020

13.

Đường thẳng d nhận \(\left(3;-2\right)\) là 1 vtcp nên có pt chính tắc:

\(\frac{x-1}{3}=\frac{y-2}{-2}\) (hoặc \(\frac{x-1}{-3}=\frac{y-2}{2}\) cũng như nhau)

14.

Denta1 nhận \(\left(m^2+1;-m\right)\) là 1 vtcp

Denta2 nhận \(\left(-3;-4m\right)\) là 1 vtcp

Để 2 đường thẳng vuông góc

\(\Leftrightarrow-3\left(m^2+1\right)=4m^2\Leftrightarrow7m^2=-3\)

Không tồn tại m thỏa mãn

25.

Đường thẳng denta nhận \(\left(0;7\right)\) là 1 vtcp nên nhận \(\left(1;0\right)\) là 1 vtpt

Denta qua \(A\left(15;6\right)\)

Phương trình: \(1\left(x-15\right)+0\left(y-6\right)=0\Leftrightarrow x-15=0\)

AH
Akai Haruma
Giáo viên
22 tháng 9 2020

Lời giải:

Gọi $M(x,y)\in \Delta$ thì $M'(x', y')\in \Delta'$ thỏa mãn:

\(T_{\overrightarrow{u}}M'=M\)

\(\Leftrightarrow \overrightarrow{M'M}=\overrightarrow{u}\)

\(\Leftrightarrow (x-x', y-y')=(-4,1)\Leftrightarrow x=x'-4; y=y'+1\)

Thay vào PT $\Delta$:

$x'-4+1=2(y'+1)$

$\Leftrightarrow x'-2y'-5=0$

Đây chính là ptđt $\Delta'$

NV
18 tháng 4 2020

20.

Đề bài sai, điểm A ko thuộc trục tọa độ

21.

Do d song song delta nên d nhận \(\left(1;-4\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=-2+t\\t=3-4t\end{matrix}\right.\)

28 tháng 4 2021

\(y=x^3-3x^2+2x+2\Rightarrow y'=3x^2-6x+2\)

Vi \(\Delta\perp d:y=x-3\Rightarrow y'=-1\Leftrightarrow3x^2-6x+2=-1\)

\(\Rightarrow x=1\Rightarrow y=1-3+2+2=2\)

\(\Rightarrow\Delta:y=-1\left(x-1\right)+2\)