\(Cho\)\(M_{\left(x\right)}=x+x^2+x^3+...+x^{2016}\)
a) tìm \(M_{\left(3;-3\right)}\)
b)CM \(M⋮105\Leftrightarrow x=2\)
c)CM \(M⋮196\Leftrightarrow x=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho M(x) = 0
=> x^2 + 7x - 8 = 0
x^2 - x + 8x - 8 = 0
x.( x-1) + 8.(x - 1) = 0
(x-1) . ( x+8) = 0
=> x -1 = 0
x =1
=> x +8 = 0
x = -8
KL: x = 1; x = -8 là nghiệm của M(x)
Chọn B. Thay \(\dfrac{1}{3}\)vào x và \(\dfrac{1}{2}\)vào y
giải để ra được m
Đặt \(\sqrt{x+2016}=y\ge0\)\(\Rightarrow y^2=x+2016\)\(\Rightarrow x=y^2-2016\)
\(\Rightarrow M=y^2-2016+y\)\(=y^2+2.\frac{1}{2}.y+\frac{1}{4}-\frac{8065}{4}=\left(y+\frac{1}{2}\right)^2-\frac{8065}{4}\ge\)\(\left(\frac{1}{2}\right)^2-\frac{8065}{4}=-2016\)\(\forall y\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x+2016}=y=0\Leftrightarrow\)\(x+2016=0\Leftrightarrow x=-2016\)
Vậy ...
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+\right)\left(x+3\right)}+...+\frac{1}{\left(x+2015\right)\left(x+2016\right)}=\frac{1}{x+2016}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+2015}-\frac{1}{x+2016}=\frac{1}{x+2016}\)
\(\frac{1}{x}-\frac{1}{x+2016}=\frac{1}{x+2016}\)
\(\frac{1}{x}-\frac{1}{x+2016}-\frac{1}{x+2016}=0\)
\(\frac{1}{x}-\frac{2x}{x+2016}=0\)
\(\frac{x+2016}{x\left(x+2016\right)}-\frac{2x}{x\left(x+2016\right)}=0\)
\(\frac{x+2016-2x}{x\left(x+2016\right)}=0\Leftrightarrow2016-x=0\Leftrightarrow x=2016\)
\(\left|x-5\right|=18+2\times\left(-8\right)\)
|x - 5| = 18 - 16
|x - 5| = 2
x - 5 = \(\pm\) 2
\(\left[\begin{array}{nghiempt}x-5=2\\x-5=-2\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=5+2\\x=5-2\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=7\\x=3\end{array}\right.\)
|x-5| = 18 + (-16)
\(a)\) \(M_{\left(3\right)}=3+3^2+3^3+...+3^{2016}\)
\(3M_{\left(3\right)}=3^2+3^3+3^4+...+3^{2017}\)
\(3M_{\left(3\right)}-M_{\left(3\right)}=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
\(2M_{\left(3\right)}=3^{2017}-3\)
\(M_{\left(3\right)}=\frac{3^{2017}-3}{2}\)
Vậy \(M_{\left(3\right)}=\frac{3^{2017}-3}{2}\)
\(M_{\left(-3\right)}=\left(-3\right)+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2016}\)
\(\left(-3\right)M_{\left(-3\right)}=\left(-3\right)^2+\left(-3\right)^3+\left(-3\right)^4+...+\left(-3\right)^{2017}\)
\(\left(-3\right)M_{\left(-3\right)}-M_{\left(-3\right)}=\left[\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2017}\right]-\left[\left(-3\right)+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]\)\(\left(-4\right)M_{\left(-3\right)}=\left(-3\right)^{2017}+3\)
\(M_{\left(-3\right)}=\frac{\left(-3\right)^{2017}+3}{-4}\)
\(M_{\left(-3\right)}=\frac{-\left(3^{2017}-3\right)}{-4}\)
\(M_{\left(-3\right)}=\frac{3^{2017}-3}{4}\)
Vậy \(M_{\left(-3\right)}=\frac{3^{2017}-3}{4}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(M_{\left(2\right)}=2+2^2+2^3+...+2^{2016}\)
\(M_{\left(2\right)}=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(M_{\left(2\right)}=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(M_{\left(2\right)}=2.7+2^4.7+...+2^{2014}.7\)
\(M_{\left(2\right)}=7\left(2+2^4+...+2^{2014}\right)⋮7\) \(\left(1\right)\)
Lại có :
\(M_{\left(2\right)}=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)
\(M_{\left(2\right)}=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{2013}\left(1+2+2^2+2^3\right)\)
\(M_{\left(2\right)}=2.15+2^5.15+...+2^{2013}.15\)
\(M_{\left(2\right)}=15\left(2+2^5+...+2^{2013}\right)⋮15\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(M_{\left(2\right)}\) chia hết cho \(7\) và \(15\)
\(\Rightarrow\)\(M_{\left(2\right)}⋮105\) ( vì \(7.15=105\) )
Vậy nếu \(M⋮105\)\(\Leftrightarrow\)\(x=2\)
Chúc bạn học tốt ~