K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 11 2019

a/ \(\left\{{}\begin{matrix}a+b=3\\-3a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}a=3\\2a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}a=-2\\2a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}a.3=-1\\-2a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{1}{3}\end{matrix}\right.\)

e/ \(\left\{{}\begin{matrix}a=-2\\a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)

16 tháng 11 2023

a: Thay x=-1 và y=-4 vào (d), ta được:

\(a\cdot\left(-1\right)+b=-4\)

=>-a+b=-4(1)

Thay x=2 và y=5 vào (d), ta được:

\(a\cdot2+b=5\)

=>2a+b=5(2)

Từ (1),(2) ta sẽ có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=-4\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\2a+b=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=3\\b=5-2a=5-6=-1\end{matrix}\right.\)

Vậy: (d): y=3x-1

b: Để A,B,C thẳng hàng thì C nằm trên đường thẳng AB

=>C thuộc (d)

Thay x=m và y=8 vào y=3x-1, ta được:

3m-1=8

=>3m=9

=>m=3

21 tháng 12 2020

bạn xem lại đề !!!

21 tháng 12 2020

xin lỗi nhập đề ko đc

 

a: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=-20\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4a=-28\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=-13\end{matrix}\right.\)

b: Vì (d)//y=-2/3x+1 nên a=-2/3

Vậy: (d): y=-2/3x+b

Thay x=4 và y=-3 vào (d), ta được:

b-8/3=-3

hay b=-1/3

11 tháng 2 2018

khó thể xem trên mạng

13 tháng 8 2018

mình không bít làm

b: Vì (d1)//(d3) nên a=1

hay (d1): y=x+b

Thay x=2 và y=3 vào (d1), ta được:

b+2=3

hay b=1

18 tháng 11 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}a=3;b\ne1\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}a=1;b\ne-5\\B\left(-2;0\right)\inđths\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1;b\ne-5\\-2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=\dfrac{1}{3}\end{matrix}\right.\)

Vì (d) đi qua hai điểm A(-1;2) và B(2;-3) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=5\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=a+2=\dfrac{-5}{3}+2=\dfrac{1}{3}\end{matrix}\right.\)