Trong không gian Oxyz, cho hai điểm M (-2;-2;1), A (1;2;-3) và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 .Tìm véctơ chỉ phương u → của đường thẳng Δ đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi M (x; y; z)
Như vậy, điểm M thuộc mặt cầu (S) tâm I(-6;6;-6) và bán kính R = √108 = 6√3. Do đó OM lớn nhất bằng
Chọn C.
Do điểm M thuộc trục Ox nên M(a;0;0)
Vì M cách đều hai điểm A, B nên MA = MB hay
Ta có:
Chọn C.
Do điểm M thuộc trục Ox nên M(a,0,0)
Vì M cách đều hai điểm A, B nên MA = MB hay
Chọn C.
Do điểm M thuộc trục Ox nên M(a,0,0)
Vì M cách đều hai điểm A, B nên MA = MB hay
Đáp án C
Suy ra M là hình chiếu vuông góc của I lên (Oxy) => I(3;-4;0)
Đáp án A.
Cách giải:
Thử lần lượt 4 đáp án thì ta thấy với M(3;-4;0)
thì M A 2 - 2 M B 2 = 3 là lớn nhất.
Chọn A
Gọi H là hình chiếu vuông góc của A lên Δ, ta có d (A; Δ) = AH.
Mặt khác, vì M ∈ Δ nên AH ≤ AM. Do đó,
Khi đó, đường thẳng Δ đi qua M, vuông góc với đường thẳng d và vuông góc với đường thẳng AM nên có véctơ chỉ phương là