K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2019

Bài 1:

Vì (d) đi qua điểm A(1;3) nên thay x=1 và y=3 vào (d) ta có:

3=a.1+b

⇔a+b=3 (1)

Vì (d) đi qua điểm B(-3;-1) nên thay x=-3 và y=-1 vào (d) ta có:

-1 = a.(-3)+b

⇔-3a+b=-1

⇔ 3a - b=1 (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=3\\3a-b=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}4a=4\\3a-b=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=1\\3.1-b=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy a=1, b=2 là giá trị cần tìm

6 tháng 9 2019

Bài 2

1, Vì (d) đi qua A(1;2003) nên thay x =1, y=2003 vào (d) ta có:

2003 = 1 +m

⇔ m = 2002

Vậy m = 2002 là giá trị cần tìm

2, Ta có:

x - y +3 =0

⇔ y= x+3

Để (d) // y = x+3 thì:

\(\left\{{}\begin{matrix}1=1\left(\text{luôn đúng}\right)\\m\ne3\end{matrix}\right.\)

Vậy m ≠ 3 thì (d) // x-y+3=0

* Chúc bạn học tốt*

1. Cách viết phương trình đường thẳng đi qua 2 điểm1.1. Cách 1: Giả sử 2 điểm A và B cho trước có tọa độ là: A(a1;a2) và B(b1;b2)Gọi phương trình đường thẳng có dạng d: y=ax+bVì A và B thuộc phương trình đường thẳng d nên ta có hệThay a và b ngược lại phương trình đường thẳng d sẽ được phương trình đường thẳng cần tìm.1.2. Cách 2 giải nhanhTổng quát dạng bài viết phương trình đường...
Đọc tiếp

1. Cách viết phương trình đường thẳng đi qua 2 điểm

1.1. Cách 1: 

Giả sử 2 điểm A và B cho trước có tọa độ là: A(a1;a2) và B(b1;b2)

  • Gọi phương trình đường thẳng có dạng d: y=ax+b
  • Vì A và B thuộc phương trình đường thẳng d nên ta có hệ
  • Thay a và b ngược lại phương trình đường thẳng d sẽ được phương trình đường thẳng cần tìm.

1.2. Cách 2 giải nhanh

Tổng quát dạng bài viết phương trình đường thẳng đi qua 2 điểm: Viết phương trình đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2).


Cách giải:
Giả sử đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2) có dạng: y = ax + b (y*)
Vì (y*) đi qua điểm A(x1;y1) nên ta có: y1=ax1 + b (1)
Vì (y*) đi qua điểm B(x2;y2) nên ta có: y2=ax2 + b (2)
Từ (1) và (2) giải hệ ta tìm được a và b. Thay vào sẽ tìm được phương trình đường thẳng cần tìm.

Bài tập ví dụ viết phương trình đường thẳng đi qua 2 điểm

Bài tập 1: Viết phương trình đường thẳng đi qua hai điểm A (1;2) và B(0;1).

Bài giải: 

Gọi phương trình đường thẳng là d: y=ax+by=ax+b

Vì đường thẳng d đi qua hai điểm A và B nê n ta có:

⇔  

Thay a=1 và b=1 vào phương trình đường thẳng d thì d là: y=x+1

Vậy phương trình đường thẳng đi qua 2 điểm A và B là : y=x+1

Bài tập 2: Cho Parabol (P):y=–ײ . Viết phương trình đường thẳng đi qua hai điểm A và B biết  A và B là hai điểm thuộc (P) và có hoành độ lần lượt là 1 và 2.

Bài giải

Với bài toán này chúng ta chưa biết được tọa độ của A và B là như nào. Tuy nhiên bài toán lại cho A và B thuộc (P) và có hoành độ rồi. Chúng ta cần đi tìm tung độ của điểm A và B là xong.

Tìm tọa độ của A và B:

Vì A có hoành độ bằng -1 và thuộc (P) nên ta có tung độ y =−(1)²=–1 => A(1;−1)

Vì B có hoành độ bằng 2 và thuộc (P) nên ta có tung độ y =–(2)²=−4 ⇒ B(2;−4) còn  cách  khác k ?

0
15 tháng 4 2019

ai giải bài này giùm với 

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3Bài 2: Cho đường thẳng (d): y = 4xviết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)Bài 4: Cho 2 hàm số bậc...
Đọc tiếp

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017

b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3

Bài 2: Cho đường thẳng (d): y = 4x

viết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10

Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)

Bài 4: Cho 2 hàm số bậc nhất y = x - m và y = -2x + m - 1

a) Xác định tọa độ giao điểm của đồ thị 2 hàm số khi m = 2

b) Vẽ đồ thị 2 hàm số trên khi m = 2

c) Tìm m để đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung

Bài 5: Viết phương trình đường thẳng (d) có hệ số góc bằng 7 và đi qua điểm M(2;-1)

Bài 6: Cho 3 đường thẳng: (d1): y = -2x + 3; (d2): y = 3x - 2; (d3): y = m(x + 1) - 5

a) Tìm m để 3 đường thẳng đã cho đồng quy

b) Chứng minh rằng đường thẳng (d3) luôn đi qua 1 điểm cố định khi m thay đổi

 

0
21 tháng 12 2021

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x+3=-3x-2\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

a) Gọi (d): y=ax+b

Vì (d)//y=2x-3 nên \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)

Vậy: (d): y=2x+b

Vì (d) đi qua điểm C(-1;4) nên 

Thay x=-1 và y=4 vào (d), ta được:

\(2\cdot\left(-1\right)+b=4\)

hay b=6

Vậy: (d): y=2x+6

Thay y=0 vào (d), ta được:

2x+6=0

hay x=-3

Vậy: A(-3;0)

b) Vì y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{-4}{5}+4=\dfrac{-4}{5}+\dfrac{20}{5}=\dfrac{16}{5}\end{matrix}\right.\)

6 tháng 7 2021

Tính góc tạo bởi đường thẳng BC và trục hoành Ox đi

a) Gọi (d): y=ax+b

Vì (d)//y=2x-3 nên ta có: \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)

=> (d): y=2x+b

Thay x=-1 và y=4 vào (d), ta được:

\(2\cdot\left(-1\right)+b=4\)

\(\Leftrightarrow b=6\)

Vậy: (D): y=2x+6

Thay y=0 vào (d),ta được:

\(2x+6=0\)

\(\Leftrightarrow x=-3\)

Vậy: A(-3;0)

b) Vì đồ thị hàm số y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\-a+b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=4+a=4+\dfrac{-4}{5}=4-\dfrac{4}{5}=\dfrac{16}{5}\end{matrix}\right.\)

Vậy: \(a=-\dfrac{4}{5}\)\(b=\dfrac{16}{5}\)

c) Độ dài đoạn thẳng AB là:

\(AB=\sqrt{\left(-3-4\right)^2+\left(0-0\right)^2}=7\)(cm)

Độ dài đoạn thẳng AC là:

\(AC=\sqrt{\left(-3+1\right)^2+\left(0-4\right)^2}=2\sqrt{5}\left(cm\right)\)

Độ dài đoạn thẳng BC là:

\(BC=\sqrt{\left(4+1\right)^2+\left(0-4\right)^2}=\sqrt{41}\left(cm\right)\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC\)

\(=7+2\sqrt{5}+\sqrt{41}\)

\(\simeq17,9\left(cm\right)\)

5 tháng 7 2021

Còn thiếu tính góc tạo bởi đường thẳng BC và trục Ox mà bạn

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

Vì $A, B\in (d)$ nên:

\(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2=-a+b\\ -1=3a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{4}\\ b=\frac{-7}{4}\end{matrix}\right.\)

Vậy PTĐT $(d)$ là: $y=\frac{1}{4}x-\frac{7}{4}$

PTĐT $(d')$ song song với $(d)$ có dạng: $y=\frac{1}{4}x+m$ với $m\neq \frac{-7}{4}$