Trong (Oxy) cho A(2;-1) và d là đường thẳng đi qua A cắt Ox, Oy tại hai điểm M, N sao cho tam giác OMN cân. Phương trình đường thẳng d là:
A. x + y + 1 = 0
B. x + y - 1 = 0
C. -x - y + 3 = 0
D. x - y - 3 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow AB=5\) ; \(\overrightarrow{CA}=\left(4;-3\right)\Rightarrow AC=5\)
\(\Rightarrow AB=AC\Rightarrow\) tam giác ABC cân tại A
\(\Rightarrow\) Phân giác trong góc A đồng thời là trung tuyến ứng với BC
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{1}{2};\dfrac{3}{2}\right)\Rightarrow\overrightarrow{MA}=\left(\dfrac{1}{2};\dfrac{1}{2}\right)=\dfrac{1}{2}\left(1;1\right)\)
\(\Rightarrow\) Đường thẳng AM nhận (1;-1) là 1 vtpt
Phương trình AM (đồng thời là phân giác trong góc A):
\(1\left(x-1\right)-1\left(y-2\right)=0\Leftrightarrow x-y+1=0\)
Do I thuộc Oy nên tọa độ có dạng \(I\left(0;y\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(1;3-y\right)\\\overrightarrow{BI}=\left(2;y+3\right)\end{matrix}\right.\)
\(\Rightarrow IA+IB=\sqrt{1+\left(3-y\right)^2}+\sqrt{2^2+\left(y+3\right)^2}\ge\sqrt{\left(1+2\right)^2+\left(3-y+y+3\right)^2}=3\sqrt{5}\)
Dấu "=" xảy ra khi \(\dfrac{2}{1}=\dfrac{y+3}{3-y}\Rightarrow y=1\Rightarrow I\left(0;1\right)\)
Cách khác:
Do A và B nằm khác phía so với Oy
\(\Rightarrow IA+IB\) đạt giá trị nhỏ nhất khi A, I, B thẳng hàng
Hay I là giao điểm của đường thẳng AB và trục Oy
\(\overrightarrow{BA}=\left(3;6\right)=3\left(1;2\right)\Rightarrow\) đường thẳng AB nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x-1\right)-1\left(y-3\right)=0\Leftrightarrow2x-y+1=0\)
I là giao điểm AB và Oy nên tọa độ là nghiệm của hệ:
\(\left\{{}\begin{matrix}2x-y+1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
\(\Rightarrow I\left(0;1\right)\)
Đáp án: D
Đường thẳng d đi qua A cắt Ox, Oy tại hai điểm M, N có dạng:
Vì tam giác OMN cân nên |a| = |b|
Vì d đi qua A(2;-1) nằm ở góc phần tư thứ tư nên b = -a, a > 0
Suy ra, đường thẳng MN có dạng:
MN đi qua A(2;-1) nên
Vậy đường thẳng MN có dạng: