K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 3 2023

Đường thẳng AB nhận (1;-1) là 1 vtpt

Do ABCD là hình chữ nhật \(\Rightarrow BC\perp AB\) và \(CD||AB\)

\(\Rightarrow\) Đường thẳng BC nhận (1;1) là 1 vtpt và đường thẳng CD nhận (1;-1) là 1 vtpt

Phương trình BC:

\(1\left(x-0\right)+1\left(y+1\right)=0\Leftrightarrow x+y+1=0\)

Phương trình CD:

\(1\left(x-0\right)-1\left(y+1\right)=0\Leftrightarrow x-y-1=0\)

\(BC=AD=d\left(C;AB\right)=\dfrac{\left|1.0-1.\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)

\(\Rightarrow AB=CD=2\sqrt{2}\)

Do AD song song BC nên pt có dạng: \(x+y+c=0\)

Mặt khác \(CD=d\left(C;AD\right)=\dfrac{\left|0.1+1.\left(-1\right)+c\right|}{\sqrt{1^2+1^2}}=2\sqrt{2}\)

\(\Rightarrow\left|c-1\right|=4\Leftrightarrow\left[{}\begin{matrix}c=5\\c=-3\end{matrix}\right.\)

Có 2 đường thẳng AD thỏa mãn: \(\left[{}\begin{matrix}x+y+5=0\\x+y-3=0\end{matrix}\right.\)

7 tháng 3 2023

Cho em hỏi CD//AB đáng lã là vtcp tại sao lại là vtpt vậy

20 tháng 3 2021

Phương trình đường thẳng qua O và song song AB có dạng: xy=0x−y=0

 Tọa độ M là nghiệm của hệ: {x+3y6=0xy=0{x+3y−6=0x−y=0 M(32;32)⇒M(32;32)

Phương trình đường thẳng BC qua M, nhận (1;1)(1;1) là 1 vtpt có dạng:

1(x32)+1(y32)=0x+y3=01(x−32)+1(y−32)=0⇔x+y−3=0

Tọa độ B là nghiệm của hệ: {xy+5=0x+y3=0{x−y+5=0x+y−3=0 B⇒B

M là trung điểm BC  tọa độ C

O là trung điểm AC  tọa độ A

O là trung điểm BD 

NV
24 tháng 2 2020

Phương trình đường thẳng qua O và song song AB có dạng: \(x-y=0\)

\(\Rightarrow\) Tọa độ M là nghiệm của hệ: \(\left\{{}\begin{matrix}x+3y-6=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow M\left(\frac{3}{2};\frac{3}{2}\right)\)

Phương trình đường thẳng BC qua M, nhận \(\left(1;1\right)\) là 1 vtpt có dạng:

\(1\left(x-\frac{3}{2}\right)+1\left(y-\frac{3}{2}\right)=0\Leftrightarrow x+y-3=0\)

Tọa độ B là nghiệm của hệ: \(\left\{{}\begin{matrix}x-y+5=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow B\)

M là trung điểm BC \(\Rightarrow\) tọa độ C

O là trung điểm AC \(\Rightarrow\) tọa độ A

O là trung điểm BD \(\Rightarrow\) tọa độ D

NV
21 tháng 3 2021

AB đi qua E và vuông góc BC nên nhận (1;-1) là 1 vtpt

Phương trình AB:

\(1\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow x-y+2=0\)

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(-3;-1\right)\)

Đường thẳng d qua M và song song AB có pt:

\(1\left(x+1\right)-1\left(y+1\right)=0\Leftrightarrow x-y=0\)

Gọi N là giao điểm d và BC \(\Rightarrow N\) là trung điểm BC

Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x-y=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;2\right)\Rightarrow C\left(7;5\right)\)

Đường thẳng AD qua M và song song BC có pt:

\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)

A là giao điểm AB và AD nên tọa độ là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-2;0\right)\)

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ D

27 tháng 5 2018

Gọi M là tọa độ trung điểm của cạnh  AD => M (1 ; 2) 

Gọi N ( x N ;   y N ) là tọa độ trung điểm của cạnh BC

Do I là tâm của hình chữ nhật nên I là trung điểm của MN.

Suy ra

x N = 2 x I − x M = − 3 y N = 2 y I − y M = − 2 ⇒ N − 3 ; − 2 .

Đáp án C

29 tháng 9 2019

Gọi M là tọa độ trung điểm của cạnh  AD => M (1 ; 2).

Gọi N ( x N   ;   y N   ) là tọa độ trung điểm của cạnh BC.

Do I là tâm của hình chữ nhật nên I là trung điểm của MN.

Suy ra  x N = 2 x I − x M = − 3 y N = 2 y I − y M = − 2 ⇒ N − 3 ; − 2 .

Đáp án C

NV
23 tháng 3 2022

Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}y-2=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{1}{2};2\right)\)

\(S_{CDE}=\dfrac{1}{2}S_{ABCD}=9\Rightarrow S_{ABCD}=18\)

\(\Rightarrow S_{ADE}=\dfrac{1}{2}AD.AE=\dfrac{1}{8}AD.AB=\dfrac{1}{8}S_{ABCD}=\dfrac{9}{4}\Rightarrow AD.AE=\dfrac{9}{2}\)

Gọi \(A\left(a;2\right)\) và \(D\left(d;2d+3\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EA}=\left(a+\dfrac{1}{2};0\right)\\\overrightarrow{AD}=\left(d-a;2d+1\right)\end{matrix}\right.\)

\(AB\perp AD\Rightarrow\overrightarrow{EA}.\overrightarrow{AD}=0\Rightarrow\left(a+\dfrac{1}{2}\right)\left(d-a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-\dfrac{1}{2}\left(loại\right)\\a=d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AE=\left|d+\dfrac{1}{2}\right|\\AD=\left|2d+1\right|\end{matrix}\right.\)

\(AE.AD=\left|\left(d+\dfrac{1}{2}\right)\left(2d+1\right)\right|=\dfrac{9}{2}\)

\(\Leftrightarrow\left(2d+1\right)^2=9\Rightarrow\left[{}\begin{matrix}d=1\left(loại\right)\\d=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(-2;2\right)\\D\left(-2;-1\right)\end{matrix}\right.\)

\(\overrightarrow{AB}=4\overrightarrow{AE}\Rightarrow\)tọa độ B

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ C