x; y; z > 0 sastisfied x+y+z = 3. prove: 1/ x^2 + 1/b^2 + 1/c^2 >= x^2 + y^2+ z^2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x(1-1)=1
<=>x.0=1
<=>0=1 ( vô nghiệm)
b)x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x= 54x
a, x.25=380125
x=380125:25
x=15205
b, (45,2+45.2)+2+x=2525255
45.2.2
45 . 2 + 2 + x + 45 . 2 = 2525255
=> 2 . (45 + 45 + 1) + x = 2525255
=> 182 + x = 2525255
=> x = 2525073
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
1x2= 2 1x2x3=6 1x2x3x4=24 1x2x3x4x5=120 1x2x3x4x5x6=720 1x2x3x4x5x6x7=5040
1x2x3x4x5x6x7x8=40320 1x2x3x4x5x6x7x8x9=362880 1x2x3x4x5x6x7x8x9x10=3628800
1 x 2 = 2
1 x 2 x 3 = 6
1 x 2 x 3 x 4 = 24
1 x 2 x 3 x 4 x 5 = 120
1 x 2 x 3 x 4 x 5 x 6 = 720
1 x 2 x 3 x 4 x 5 x 6 x 7 = 5040
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 = 40320
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 362880
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 = 3628800
đọc phần chỗ màu xanh là biết bài của mình phải làm gì rồi.
Sử dụng bất đẳng thức Bunhiacopxki dạng cộng mẫu thức , ta có :
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2}=\frac{9}{x^2+y^2+z^2}\)
Giờ ta cần chỉ ra được \(\frac{9}{x^2+y^2+z^2}\ge x^2+y^2+z^2\)thì bài toán sẽ được hoàn tất phép chứng minh
Thật vậy , biến đổi tương đương : \(9\ge\left(x^2+y^2+z^2\right)< =>x^2+y^2+z^2\le3\)
dễ rồi nhỉ