Cho 2 đa thức A=5x+y+1 và B=3x-y+4. CMR: Nếu x=m; y=n với m và n là số tự nhiên thì tích A*B là 1 số chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất:chẵn ± lẻ = lẻ
Ta có:\(A+B=\left(5x+y+1\right)+\left(3x-y+4\right)\)
\(=\left(5x+3y\right)+\left(y-y\right)+\left(1+4\right)\)
\(=8x+5\)vì x,y là số tự nhiên.
Suy ra một trong 2 số A or B là số chẵn.
Giả sử A là số chẵn.
\(\Rightarrow A\)có dạng \(2k\)với \(k\inℕ\)
Áp dụng tính chất chẵn × lẻ = chẵn hoặc chẵn × chẵn = chẵn \(\Rightarrow A.B=2k\cdot B\)luôn luôn chẵn.
\(\Rightarrowđpcm\)
Giả sử 3 đa thức trên cùng nhận giá trị âm với mọi x, y.
Ta có: \(A.B.C\)\(=\left(16x^4-8x^3y+7x^2y^2-9y^4\right)+\left(-15x^4+3x^3y-5x^2y^2-6y^4\right)+\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4+5x^3y+3x^2y^2+17y^4+1\)
\(=\left(16x^4-15x^4\right)-\left(8x^3y-3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2+3x^2y^2\right)-\left(9y^4+6y^4-17y^4\right)+1\)
\(=x^4-0+5x^2y^2-2y^4+1\)
\(=x^4+5x^2y^2-2y^4+1\)
Ta thấy: \(x^4\ge0\) \(\forall x\) \(;\) \(x^2y^2\ge0\)\(\forall x,y\) \(;\) \(y^4\ge0\)\(\forall y\)
\(\Rightarrow\)\(\left(x^4+5x^2y^2-2y^4+1\right)\ge1\) \(\forall x,y\)
\(\Rightarrow\)\(A.B.C\)nhận giá trị dương
\(\Rightarrow\)3 đa thức trên không thể cùng nhận giá trị âm với mọi x, y
\(\Rightarrow\)\(dpcm\)
Bài 4:
\(P\left(x\right)=\left(-5x^3+2x^3+3x^3\right)+x^4+3x^2+\left(x-x\right)-4+7\)
\(=x^4+3x^2+3\)
\(Q\left(x\right)=-x^4+\left(5x^3+5x^3\right)+\left(-x^2-x^2\right)+\left(3x+x\right)-1\)
\(=-x^4+10x^3-2x^2+4x-1\)
\(x^2\left(y-1\right)-4\left(y-1\right)\\ =\left(y-1\right)\left(x^2-4\right)=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)
Chứng minh ra