K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

Khi m =3 

=> hàm số trở thành y=2x-3+3=2x

Hoành độ giao điểm (p) và (d) là nghiệm pt 

\(x^2=2x\)

<=> x2-2x=0

<=> x(x-2)=0

<=> x=0 hoặc x=2

với x=0 thay vào (P) ta có y=02=0

với x=2thay vào (P) ta có  y=22=4

Vậy (P) và (d) cắt nhau tại 2 điểm có tọa độ (0;0)và (2;4) khi m =3

b) Hoành độ giao điểm (p) và (d) là nghiệm pt 

\(x^2=2x-m+3\)

\(x^2-2x+m-3=0\)

ta có \(\Delta\)=\(2^2-4\left(m-3\right)\)=\(4-4m+12\)

                                                       =\(16-4m\)

Để (p) và (d ) cắt nhau tại 2 điểm phân biệt thì 16-4m>0 hay m<4

Theo Vi ét ta có x1+x2=2

                           x1.x2=m-3

Và y1=x12; y2=x22

Khi đó x1.x2.( y1+y2)=-6

<=> (m-3) . ( x12+x22)=-6

<=> (m-3). ((x1+x2)2-2x1x2)=-6

<=> (m-3). (4-2m+6)=-6 

 Tự lm nốt nha bn ! ( mk mỏi tay quá :) ) ( nhớ k mk đấy )

a: Sửa đề; (d): y=x-m+3

Khi m=1 thì (d): y=x-1+3=x+2

PTHĐGĐ là:

x^2=x+2

=>x^2-x-2=0

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

Khi x=2 thì y=2^2=4

Khi x=-1 thì y=(-1)^2=1

b: PTHĐGĐ là:

x^2-x+m-3=0

Δ=(-1)^2-4(m-3)

=1-4m+12=-4m+13

Để (d) cắt (P) tại hai điểm phân biệt thì -4m+13>0

=>m<13/4

c: y1+y2=3

=>x1^2+x2^2=3

=>(x1+x2)^2-2x1x2=3

=>1-2(m-3)=3

=>2(m-3)=-2

=>m-3=-1

=>m=2(nhận)

23 tháng 2 2023

a: Khi m=-2 thì y=3/2x+2

PTHĐGĐ là:

3/4x^2-3/2x-2=0

=>\(x=\dfrac{3\pm\sqrt{33}}{3}\)

=>\(y\in\left\{\dfrac{7+\sqrt{33}}{2};\dfrac{7-\sqrt{33}}{2}\right\}\)

b: PTHĐGĐ là:

3/4x^2-3/2x+m=0

=>3x^2-6x+4m=0

Δ=(-6)^2-4*3*(4m)=-48m+36

Để (P) cắt (d) tại hai điểm phân biệt thì -48m+36>0

=>m<3/4

x1^2+x2^2=10

=>(x1+x2)^2-2x1x2=10

=>2^2-2(4m/3)=10

=>4-8m/3=10

=>8m/3=-6

=>m=-6:8/3=-6*3/8=-18/8=-9/4

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$

$\Leftrightarrow 0=2.1-m+3=5-m$

$\Leftrightarrow m=5$

b.

PT hoành độ giao điểm:

$x^2-(2x-m+3)=0$

$\Leftrightarrow x^2-2x+m-3=0(*)$

Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$

Điều này xảy ra khi:

$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$

Khi đó:
$x_1^2-2x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-x_2^2=-12$

$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$

$\Rightarrow x_1=-2; x_2=4$

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

a) Xét phương trình hoành độ giao điểm

  \(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=4\end{matrix}\right.\)

  Vậy tọa độ giao điểm là \(\left(1;1\right)\) và \(\left(-2;4\right)\)

  

bạn xem lại đề phần b 

undefined

a:Khi m=3 thì phương trình hoành độ giao điểm là:

\(x^2-2x-3=0\)

=>(x-3)(x+1)=0

=>x=3 hoặc x=-1

=>y=9 hoặc y=1

b: Phương trình hoành độ giao điểm là:

\(x^2-2x-m=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-m\right)=4m+4\)

Để phương trình có hai nghiệm phân biệt thì 4m+4>0

hay m>-1

Theo đề, ta có:

\(\left(x_1+x_2\right)^2+\left(x_1+x_2\right)-2x_1x_2=2020\)

\(\Leftrightarrow2^2+2-2\cdot\left(-m\right)=2020\)

=>2m+6=2020

=>2m=2014

hay m=1007