Mấy sư phụ giỏi toán ơi, làm giúp mình bài này cái, khó quá!
Tìm các số dương x; y thỏa mãn:
\(\hept{\begin{cases}3x^2y=y^2+2\\3xy^2=x^2+2\end{cases}}\).
Tính \(A=x^3+\frac{1}{y^3}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử các số đó là x;y với x>1 ; y>1 và không làm giảm tính tổng quát, ta có thể đặt: \(x\le y\)
Theo đề bài, ta có: \(\left(x+1\right)⋮y\) và \(\left(y+1\right)⋮x\)
Do vậy: \(\left[\left(x+1\right)\left(y+1\right)\right]⋮xy\)
\(\left(xy+x+y+1\right)⋮xy\Rightarrow\left(x+y+1\right)⋮xy\)
Hay x+y+1 = p.xy với p thuộc N
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=p\)
Vì \(x\ge1;y\ge1\) Nên rõ ràng là: \(0< \frac{1}{x}+\frac{1}{y}+\frac{1}{xy}\le1+1+1=3\)
Vậy p chỉ có thể nhận một trong các giá trị 1;2;3
- Với p = 3 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=3\Rightarrow\left(1;1\right)\)
- Với p = 2 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\) => Phương trình vô nghiệm
- Với p =1 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\Rightarrow\left(2;3\right)\)
Vậy có 3 cặp số thỏa mãn yêu cầu: (1;1) ; (2;3) ; (3;2)
P/s: Không chắc lắm. Nếu còn nhiều sai sót, mong các anh/chị, thầy cô sửa cho em
Trời đất, bạn MMS giỏi ghê. Thế mà mình nghĩ mãi không ra. Cảm ơn bạn nhiều
Số tuổi anh hơn em là : 9 - 4 = 5 ( tuổi )
Hiệu số phần bằng nhau là : 2 - 1 = 1 ( phần )
Số tuổi của anh lúc anh gấp 2 lần tuổi em là : 5 : 1 x 2 = 10 ( Tuổi )
Vậy số năm anh gấp đôi tuổi em là : 10 - 9 = 1 tuổi
Vậy 1 năm nữa tuổi anh gấp đôi tuổi em
Con Gà đó bạn. vì các con kia có 4 chân còn Gà có 2 chân. k nha
Từ \(3x^2y=y^2+2\left(4\right)\)\(\Rightarrow y^2=3x^2y-2\left(1\right)\)
\(3xy^2=x^2+2\left(2\right)\Rightarrow x^2=3xy^2-2\left(3\right)\)
Lấy (1) thay vào (2) ta đc:
\(3x.\left(3x^2y-2\right)=x^2+2\)
\(\Leftrightarrow9x^3y-6x-x^2-2=0\)
Lấy (3) thay vào (4) ta đc:
\(3y\left(3xy^2-2\right)=y^2+2\)
\(\Leftrightarrow9xy^3-6y-y^2-2=0\)
Đến đây sao khó hiểu thật
cái này hơi bị rối nảo ak nha :)