tính giá trị của biểu thức
a) (x+y)(x-y).(y+z)(y-z) tại x =1 ; y = -3807 ; z = 100
b) x^10 - 2013x^9 + 2013x^8 + 2013x^7 + ... - 2013 + 1 tại x = 2012
c) x^222 - 19x^221 + 19x^220 - 19x^219 + .... - 19x + 1 tại x = 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi x=-2 thì \(A=3\cdot\left(-2\right)^2+5\cdot\left(-2\right)-1=12-10-1=1\)
b: \(B=6xyz^4=6\cdot3\cdot2\cdot1^4=36\)
\(a,A=\left(x+y\right)^2-9z^2=\left(x+y-3z\right)\left(x+y+3z\right)\\ A=\left(5+7-36\right)\left(5+7+36\right)=-24\cdot48=-1152\\ b,B=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)=\left(2x+y\right)\left(2x-y-1\right)\\ B=\left(2+2\right)\left(2-2-1\right)=4\cdot\left(-1\right)=-4\)
a: A=3(x^2-y^2)-2(x-y)^2
=3(x+y)(x-y)-2(x-y)^2
=(x-y)(3x+3y-2x+2y)
=(x-y)(x+5y)
=(4+4)(4-5*4)
=8*(-16)=-128
b: \(B=\left(2x-4\right)^2+2\cdot\left(2x-4\right)\left(x+1\right)+\left(x+1\right)^2\)
=(2x-4+x+1)^2
=(3x-3)^2
Khi x=-1/2 thì B=(-3/2-3)^2=(-9/2)^2=81/4
c: \(C=x^2\left(5-4\right)+y^2\left(4-6\right)+z^2\left(6+4\right)\)
=x^2-2y^2+10z^2
=6^2-2*5^2+10*4^2
=146
d: x=9 thì x+1=10
\(D=x^{2017}-x^{2016}\left(x+1\right)+x^{2015}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)\)
=x^2017-x^2017+x^2016+...-x^3-x^2+x^2+x-x-1
=-1
a: A=3(x^2-y^2)-2(x-y)^2
=3(x+y)(x-y)-2(x-y)^2
=(x-y)(3x+3y-2x+2y)
=(x-y)(x+5y)
=(4+4)(4-5*4)
=8*(-16)=-128
\(A=\dfrac{\dfrac{1}{9}:\dfrac{7}{5}:\dfrac{4}{3}}{\dfrac{1}{81}:\dfrac{49}{25}:\dfrac{16}{9}}=\dfrac{5}{84}:\dfrac{25}{7056}=\dfrac{84}{5}\)
`Answer:`
Mình sửa đề lại thành: \(F=\left(1+\frac{x}{z}\right)\left(1-\frac{y}{x}\right)\left(1-\frac{z}{y}\right)\)
Theo đề ra, ta có: \(-x+y-z=0\Rightarrow\hept{\begin{cases}y=x+z\\x=y-z\\y-x=z\end{cases}}\left(\text{*}\right)\)
\(F=\left(1+\frac{x}{z}\right)\left(1-\frac{y}{x}\right)\left(1-\frac{z}{y}\right)=\left(\frac{z}{z}+\frac{x}{z}\right)\left(\frac{x}{x}-\frac{y}{x}\right)\left(\frac{y}{y}-\frac{z}{y}\right)=\frac{z+x}{z}.\frac{-\left(y-x\right)}{x}.\frac{y-z}{y}\)
Thay (*) vào `F:` \(F=\frac{y}{z}.\frac{-z}{x}.\frac{x}{y}=-1\)
\(\dfrac{1}{\left(x-y\right)\left(z^2+yz-x^2-xz\right)}=\dfrac{1}{\left(x-y\right)\left[\left(z-x\right)\left(z+x\right)+y\left(z-x\right)\right]}=\dfrac{1}{\left(z-x\right)\left(x-y\right)\left(x+y+z\right)}\)
Tương tự: \(\dfrac{1}{\left(y-z\right)\left(x^2+xz-y^2-yz\right)}=\dfrac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}\)
\(\dfrac{1}{\left(z-x\right)\left(y^2+xy-z^2-xz\right)}=\dfrac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}\)
\(\Rightarrow M=\dfrac{y-z-z+x-x+y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}\\ M=\dfrac{2}{\left(x-y\right)\left(z-x\right)\left(x+y+z\right)}\)
a: \(A=0x^2y^4z+\dfrac{7}{2}x^2y^4z-\dfrac{2}{5}x^2y^4z=\dfrac{31}{10}x^2y^4z=\dfrac{31}{10}\cdot2^2\cdot\dfrac{1}{16}\cdot\left(-1\right)=-\dfrac{31}{40}\)
a: \(=\dfrac{7}{5}x^4z^3y=\dfrac{7}{5}\cdot2^4\cdot\left(-1\right)^3\cdot\dfrac{1}{2}=-\dfrac{56}{5}\)
b: \(=-xy^3\)