Biết A x 1 ; y 1 , B x 2 ; y 2 là hai điểm thuộc đồ thị (C) của hàm số y = x + 2 2 x - 1 cách đều hai điểm M 0 ; 2 , N 2 , 0 . Giá trị biểu thức p = x 1 + x 2 - 2 x 1 x 2 bằng
A. 3
B. -1
C. -7
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: \(\left|x-2\right|=\left|4-x\right|\)
\(\Leftrightarrow x-2=4-x\)
\(\Leftrightarrow2x=6\)
hay x=3
b) Ta có: \(\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)+\left(-5\right)=6\)
\(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=11\)
\(\Leftrightarrow\left|2x-1\right|-3=\dfrac{-11}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{-11}{2}+\dfrac{6}{2}=\dfrac{-5}{2}\)(Vô lý)
Lời giải:
Áp dụng BĐT AM-GM:
$P=(a+1)+\frac{2}{a+1}+2\geq 2\sqrt{(a+1).\frac{2}{a+1}}+2=2\sqrt{2}+2$
Vậy $P_{\min}=2\sqrt{2}+2$
Giá trị này đạt tại $(a+1)^2=2; a>0\Leftrightarrow a=\sqrt{2}-1$
------------------------
Bổ sung ĐK: $a>1$
$X=\frac{a^2-1+2}{a-1}=a+1+\frac{2}{a-1}$
$=(a-1)+\frac{2}{a-1}+2$
$\geq 2\sqrt{2}+2$ (AM-GM)
Vậy $X_{\min}=2\sqrt{2}+2$
Giá trị đạt tại $(a-1)^2=\sqrt{2}; a>1\Leftrightarrow a=\sqrt{2}+1$
a) Ta có:
1; 4; 7;...; 100 có (100 - 1) : 3 + 1 = 34 (số)
1 + 4 + 7+ ... + 100 = (100 + 1) × 34 : 2
= 101 × 17
(1 + 4 + 7 + ... + 100) : a = 17
101 × 17 : a = 17
a = 101 × 17 : 17
a = 100
b) (X - 1/2) × 5/3 = 7/4 - 1/2
(X - 1/2) × 5/3 = 5/4
X - 1/2 = 5/4 : 5/3
X - 1/2 = 3/4
X = 3/4 + 1/2
X = 5/4
a) (1 + 4 + 7 +...+ 100) : a = 17
1717 : a = 17
a = 101
b) \(\left(x-\dfrac{1}{2}\right)\times\dfrac{5}{3}=\dfrac{7}{4}-\dfrac{1}{2}\)
\(\left(x-\dfrac{1}{2}\right)\times\dfrac{5}{3}=\dfrac{10}{8}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{10}{8}\div\dfrac{5}{3}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{10}{8}\times\dfrac{3}{5}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{3}{4}\)
\(x-\dfrac{1}{2}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}+\dfrac{1}{2}\)
\(x=\dfrac{5}{4}\)
a/
$(x+1)+(x+2)+...+(x+100)=5750$
$(x+x+....+x)+(1+2+....+100)=5750$
Số lần xuất hiện của $x$:
$(100-1):1+1=100$
Suy ra:
$100x+(1+2+3+....+100)=5750$
$100x+100.101:2=5750$
$100x+5050=5750$
$100x=700$
$x=700:100$
$x=7$
b/
$x^2y-x+xy=6$
$x(xy-1+y)=6$
Do $x,y$ nguyên nên $xy-1+y$ cũng là số nguyên. Mà tích $x(xy-1+y)=6$ nên ta có các TH sau:
TH1: $x=1, xy-1+y=6$
$\Rightarrow y-1+y=6\Rightarrow y=\frac{7}{2}$ (loại)
TH2: $x=-1, xy-1+y=-6$
$\Rightarrow -y-1+y=-6\Rightarrow -1=-6$ (vô lý - loại)
TH3: $x=2, xy-1+y=3$
$\Rightarrow 2y-1+y=3\Rightarrow 3y=4\Rightarrow y=\frac{4}{3}$ (loại)
TH4: $x=-2, xy-1+y=-3$
$\Rightarrow -2y-1+y=-3$
$\Rightarrow -y-1=-3\Rightarrow y=2$ (tm)
TH5: $x=3, xy-1+y=2\Rightarrow 3y-1+y=2$
$\Rightarrow 4y=3\Rightarrow y=\frac{3}{4}$ (loại)
TH6: $x=-3, xy-1+y=-2\Rightarrow -3y-1+y=-2$
$\Rightarrow -2y=-1\Rightarrow y=\frac{1}{2}$ (loại)
TH7: $x=6, xy-1+y=1$
$\Rightarrow 6y-1+y=1\Rightarrow 7y=2\Rightarrow y=\frac{2}{7}$ (loại)
TH8: $x=-6, xy-1+y=-1$
$\Rightarrow -6y-1+y=-1$
$\Rightarrow -5y=0\Rightarrow y=0$ (tm)
a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))
\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)
\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)
\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)
\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)
\(A=\dfrac{-5}{x-3}\)
b) Ta có: \(\left|x\right|=1\)
TH1: \(\left|x\right|=-x\) với \(x< 0\)
Pt trở thành:
\(-x=1\) (ĐK: \(x< 0\))
\(\Leftrightarrow x=-1\left(tm\right)\)
Thay \(x=-1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)
TH2: \(\left|x\right|=x\) với \(x\ge0\)
Pt trở thành:
\(x=1\left(tm\right)\) (ĐK: \(x\ge0\))
Thay \(x=1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)
c) \(A=\dfrac{1}{2}\) khi:
\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10=x-3\)
\(\Leftrightarrow x=-10+3\)
\(\Leftrightarrow x=-7\left(tm\right)\)
d) \(A\) nguyên khi:
\(\dfrac{-5}{x-3}\) nguyên
\(\Rightarrow x-3\inƯ\left(-5\right)\)
\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)
a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)
\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)
\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)
\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)
b: |x|=1
=>x=-1(loại) hoặc x=1(nhận)
Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)
c: A=1/2
=>x-3=-10
=>x=-7
d: A nguyên
=>-5 chia hết cho x-3
=>x-3 thuộc {1;-1;5;-5}
=>x thuộc {4;2;8;-2}