Cho biểu thức: P = (\(\frac{2}{\sqrt{xy}}\) + \(\frac{1}{x}\)+ \(\frac{1}{y}\)). \(\frac{\sqrt{xy}\left(x+y\right)-xy}{x\sqrt{x}+y\sqrt{y}}\) (với x > 0; y > 0)
1. Rút gọn biểu thức P
2. Biết xy = 16. Tìm giá trị nhỏ nhất của P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(P=\frac{1}{\sqrt{xy}}\)
b/ \(x^3=8-6x\)
\(\Rightarrow P=\frac{1}{\sqrt{x\left(x^2+6\right)}}=\frac{1}{\sqrt{x^3+6x}}=\frac{1}{\sqrt{8-6x+6x}}=\frac{1}{2\sqrt{2}}\)
em viết nhầm đề nha.M = \(\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)mới đúng