Cho x>0; y>0 và 2x+3y\(\le\) 2. Tìm GTNN của \(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
Suy ra g(x) xác định trên ( a ; b ) \ x 0 và
Mặt khác, f ( x ) = f ( x 0 ) + L ( x − x 0 ) + ( x − x 0 ) g ( x ) nên
Vậy hàm số y = f(x) liên tục tại
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Dễ thấy: \(x_0;y_0\ne 0\)
*)Xét \(x_0;y_0>0\) xài BĐT AM-GM
\(x^3+y^3+1\ge3\sqrt[3]{x^3y^3}=3xy\)
Xảy ra khi \(x=y=1\)
Khi đó \(\left(1+x_0\right)\left(1+\dfrac{1}{y_0}\right)\left(1+\dfrac{x_0}{y_0}\right)=8\)
*)Xét \(x_0;y_0<0\)\(\Rightarrow3xy>0;x^3+y^3+1\le0\) (loại)
- Định nghĩa:
- Cho h = Δx, khi Δx → 0 thì h → 0 nên ta có:
Chọn C
Ta có
x − y = 5 3 x + 2 y = 18 ⇔ x = y + 5 3. y + 5 + 2 y = 18 ⇔ x = y + 5 3 y + 15 + 2 y = 18 ⇔ x = y + 5 5 y = 3
⇔ y = 3 5 x = 5 + 3 5 ⇔ x = 28 5 y = 3 5
Vậy hệ phương trình có nghiệm duy nhất x ; y = 28 5 ; 3 5 ⇒ x . y = 84 25
Đáp án: B
\(2\ge2x+3y\ge2\sqrt{2x.3y}\Rightarrow xy\le\frac{1}{6}.\)
\(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{26}{3xy}\ge\frac{\left(2+2\right)^2}{4x^2+9y^2+12xy}+\frac{26}{3xy}\)
\(\ge\frac{4^2}{2^2}+\frac{26}{3.\frac{1}{6}}=56\)
Dấu \(=\)khi \(\hept{\begin{cases}\frac{2}{4x^2+9y^2}=\frac{2}{12xy}\\2x=3y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)
Áp dụng bất đẳng thức Cô – si cho hai số dương, ta có: 2x + 3y ≥ 2
⇔ 2 ≤ 2x + 3y
Mà 2x + 3y ≤ 2
Do đó ≤ 1 6xy ≤ 1. Kết hợp kết quả ở câu 1 ta có:
A = = 4( ) + ≥ 4 + = 16 ≥ 16. = 56
Dấu “ = “ xảy ra ⇔ ⇔
Vậy giá trị nhỏ nhất của biểu thức A là 56.