x/3=y/4 ; y/5=z/7 va 2x+y-z=372
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.
1. Có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^2=3^2\)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))
\(------\)
Lại có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^3=3^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)
\(\Leftrightarrow x^3+y^3=18\)
Ta có: \(x^2+y^2=7\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)
\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)
\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)
![](https://rs.olm.vn/images/avt/0.png?1311)
c: Ta có: x=16
nên x+1=17
Ta có: \(C=x^4-17x^3+17x^2-17x+20\)
\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20\)
=20-x
=4
x,y,z>0,x+y+z=2015. MIN
A=\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bdt phu \(\frac{a^{n+2}+b^{n+2}}{a^{n+1}+b^{n+1}}\ge\frac{a^{n+1}+b^{n+1}}{a^n+b^n}\)
cai nay ban tu chung minh nha , nhan cheo rut gon la ra
dau = khi a=b
Ap dung ta co \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x^3+y^3}{x^2+y^2}\ge\frac{x^2+y^2}{x+y}\ge\frac{x+y}{2}\)
tuong tu va suy ra \(A\ge\frac{x+y+y+z+z+x}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z=2015\)
Vay Amin = 2015 <=> x=y=z=2015/3
chuc ban hoc tot
\(\dfrac{x}{3}\) = \(\dfrac{y}{4}\); \(\dfrac{y}{5}\) = \(\dfrac{z}{7}\); 2\(x\) + y - z = 372
\(x\) = \(\dfrac{y}{4}\).3; z = \(\dfrac{y}{5}\).7
Thay \(x\) = \(\dfrac{y}{4}\).3 và z = \(\dfrac{y}{5}\).7 vào biểu thức 2\(x\) + y - z = 372 ta có:
2.\(\dfrac{y}{4}\).3 + y - \(\dfrac{y}{5}\).7 = 372
y.( 2.\(\dfrac{1}{4}\).3 + 1 - \(\dfrac{7}{5}\)) = 372
y.\(\dfrac{11}{10}\) = 372
y = 372 : \(\dfrac{11}{10}\)
y = \(\dfrac{3720}{11}\)
\(x\) = \(\dfrac{\dfrac{3720}{11}}{4}\).3 = \(\dfrac{2790}{11}\)
z = \(\dfrac{\dfrac{3720}{11}}{5}\).7 = \(\dfrac{5208}{11}\)
Vậy (\(x;y;z\)) = (\(\dfrac{2790}{11}\); \(\dfrac{3720}{11}\); \(\dfrac{5208}{11}\))