K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{y}{15}=\dfrac{z}{18}\)=> \(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{18}\)

 Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{x+y-z}{20+15-18}=\dfrac{49}{17}\)

=> x=  \(\dfrac{49}{17}.20\)\(\dfrac{980}{17}\)

=> y= \(\dfrac{49}{17}.15\)\(\dfrac{735}{17}\)

=> z= \(\dfrac{49}{17}.18=\dfrac{882}{17}\)

 Đây là kết quả mình tính đc, bạn tham khảo nhé !

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Bài này có đúng là của lớp 7 không bạn?

26 tháng 5 2018

Khai triển rồi thu gọn

19 tháng 9 2019

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

24 tháng 8 2023

Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.

1. Có: \(x+y=3\)

\(\Leftrightarrow\left(x+y\right)^2=3^2\)

\(\Leftrightarrow x^2+2xy+y^2=9\)

\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))

\(------\)

Lại có: \(x+y=3\)

\(\Leftrightarrow\left(x+y\right)^3=3^3\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)

\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)

\(\Leftrightarrow x^3+y^3=18\)

Ta có: \(x^2+y^2=7\)

\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)

\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)

\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)

24 tháng 8 2023

2. Bạn làm tương tự như ý 1 là được nhé!!

c: Ta có: x=16

nên x+1=17

Ta có: \(C=x^4-17x^3+17x^2-17x+20\)

\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20\)

=20-x

=4

26 tháng 7 2021

Đây nhé tích giúp mình nhaundefinedundefined

12 tháng 2 2020

Bdt phu \(\frac{a^{n+2}+b^{n+2}}{a^{n+1}+b^{n+1}}\ge\frac{a^{n+1}+b^{n+1}}{a^n+b^n}\)

cai nay ban tu chung minh nha , nhan cheo rut gon la ra

dau = khi a=b

Ap dung ta co \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x^3+y^3}{x^2+y^2}\ge\frac{x^2+y^2}{x+y}\ge\frac{x+y}{2}\)

tuong tu va suy ra \(A\ge\frac{x+y+y+z+z+x}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z=2015\)

Vay Amin = 2015 <=> x=y=z=2015/3

chuc ban hoc tot