Tìm các cặp số nguyên (x; y) thỏa mãn: x^2-xy+3x-y=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^3+y^3=\left(x+y\right)^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-x-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\left(1\right)\\x^2-xy+y^2-x-y=0\left(2\right)\end{matrix}\right.\)
(1) thì tự làm nốt
\(\left(2\right)\Leftrightarrow x^2-x\left(y+1\right)+y^2-y=0\)
Xem phương trình ẩn x. Để phương trình có nghiệm thì:
\(\Delta_x=\left(y+1\right)^2-4\left(y^2-y\right)\ge0\)
\(\Leftrightarrow0\le y\le2\)
Làm nốt

159 − (25 − x) = 43
159 − 25 + x = 43
x = 43 − 159 + 25
x = −91.
(79 − x) − 43 = −(17 − 52)
79 − x − 43 = −17 + 52
−x = −17 + 52 − 79 + 43
−x = −1
x = 1.

\(\text{ a) 12+(4−x)=−5}\\ 4-x=-5-12\\ 4-x=-17\\ x=4-\left(-17\right)\\ x=21\)

a) x−(−15)=−13−(−85−13)
=> x+15=85
=>x=70
b) (−9−x)+(x−14)=17−(−8+x)
=>-9-x+x-14=17+8-x
=>-23=25-x
=>x=48

b: \(\Leftrightarrow x-15-27-x+x-13=-1\)
\(\Leftrightarrow x-55=-1\)
hay x=54
x2 - xy + 3x - y = 5
\(\Leftrightarrow\) x(x - y) + x - y + 2x = 5
\(\Leftrightarrow\) (x - y)(x + 1) + 2x + 2 = 7
\(\Leftrightarrow\) (x - y)(x + 1) + 2(x + 1) = 7
\(\Leftrightarrow\) (x - y + 2)(x + 1) = 7
Vì x, y \(\in\) Z nên (x - y + 2)(x + 1) \(\in\) Z
Xét các TH:
TH1: \(\left\{{}\begin{matrix}x-y+2=7\\x+1=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=7\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\) (TM)
TH2: \(\left\{{}\begin{matrix}x-y+2=-7\\x+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2-y+2=-7\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\) (TM)
TH3: \(\left\{{}\begin{matrix}x-y+2=1\\x+1=7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6-y+2=1\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\) (TM)
TH4: \(\left\{{}\begin{matrix}x-y+2=-1\\x+1=-7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-8-y+2=-1\\x=-8\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-8\\y=-5\end{matrix}\right.\) (TM)
Vậy ...
Chúc bn học tốt!