K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

a. Ta có: n2-7 \(⋮\) n+3

<=> n2-9+2 \(⋮\) n+3

<=> (n-3)(n+3)+2\(⋮\) n+3

<=> 2 \(⋮\) n+3

=> n+3\(\in\)Ư(2)=\(\left\{\pm1;\pm2\right\}\)

Ta có bảng sau:

n+3 1 -1 2 -2
n -2 -4 -1 -5

Vậy n\(\in\left\{-2;-4;-1;-5\right\}\)

8 tháng 3 2017

giúp mình nữa đi huhu

18 tháng 9 2016

Đặt \(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\) => a + b + c = 18

\(P=\frac{2y+3z+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3z}=\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\)

Lại đặt \(\hept{\begin{cases}m=a+1\\n=b+1\\p=c+1\end{cases}}\Rightarrow\hept{\begin{cases}a=m-1\\b=n-1\\c=p-1\end{cases}}\) 

Ta có : \(\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+c+5}{c+1}=\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\)

\(=24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{24.9}{m+n+p}-3=\frac{24.9}{\left(a+1\right)+\left(b+1\right)+\left(b+1\right)}-3\)

                                                       \(=\frac{24.9}{18+3}-3=\frac{51}{7}\)

21 tháng 1 2019

Cho x > 0 , y > 0 và \(x+y\ge6\). Tìm GTNN của biểu thức P = 3x + 2y + \(\frac{6}{x}+\frac{8}{y}\)

Ta có : P = \(3x+2y+\frac{6}{x}+\frac{8}{y}\)

\(\Rightarrow P=\left[\frac{6}{x}+\frac{3}{2}x\right]+\left[\frac{8}{y}+\frac{1}{2}y\right]+(\frac{3}{2})(x+y)\)

\(\Rightarrow6+4+\frac{3}{2}\cdot6\)

\(\Rightarrow A\ge19\)

Vậy Amin = 19 => x = 2 với y = 4

29 tháng 10 2016

Ta có

\(\frac{x^2+4y^2}{x-2y}=\frac{x^2+4y^2-4xy+4xy}{x-2y}=\frac{\left(x-2y\right)^2}{x-2y}+\frac{4}{x-2y}\)

\(=x-2y+\frac{4}{x-2y}\)

Áp dụng bđt Cauchy cho hai số không âm, ta có

\(x-2y+\frac{4}{x-2y}\ge2\sqrt{\left(x-2y\right)\times\frac{4}{x-2y}}=2\sqrt{4}=4\)

Suy ra Pmin = 4

Dấu bằng xảy ra khi và chỉ khi \(x-2y=\frac{4}{x-2y}\Leftrightarrow\left(x-2y\right)^2=4\Leftrightarrow x-2y=2\)

( do x - 2y \(\ge0\) )