K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Lời giải:
Nếu $x+y+z=0$ thì:

$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$

$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$

$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$ 

(thỏa mãn đkđb)

Khi đó:

$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$

$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$

Nếu $x+y+z\neq 0$

Áp dụng TCDTSBN:

$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$

$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:

$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$

17 tháng 9 2017

đề thiếu bạn ơi cái này phải áp dụng tính chất dãy tỉ số bằng nhau 

17 tháng 9 2017

Bạn ơi đề bài có vậy thôi nha.

Bạn chỉ mình cách dãy tỉ số bằng nhau đc ko ạ???

12 tháng 1 2022

\(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\le1\Rightarrow-1\le x,y,z\le1\)

Ta có:\(x^3+y^3+z^3-x^2-y^2-z^2=0\)

\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)

Vì \(x-1\le0,y-1\le0,z-1\le0\)

\(\Rightarrow x^2\left(x-1\right)\text{​​}\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)

\(\Rightarrow x^2\left(x-1\right)\text{​​}+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)

Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\)

\(\Rightarrow\left(x,y,z\right)\) là bộ (0,0,1) và các hoán vị

\(\Rightarrow x^{2021}+y^{2021}+z^{2021}=1\)

10 tháng 6 2023

Ta cần chứng minh: 

\(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(1\right)\left(a,b>0\right)\)

\(\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{a+b}{ab}\\ \Leftrightarrow4ab\le\left(a+b\right)^2\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

\(DBXR\Leftrightarrow a=b\)

Do các phép biến đổi tương đương nên (1) luôn đúng

Áp dụng (1), ta có:

\(\dfrac{1}{2x+y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}\left[\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\right]=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Chứng minh tương tự, ta được:

\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)

Cộng từng vế BĐT, ta được:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)Hay \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\left(đpcm\right)\)

\(DBXR\Leftrightarrow x=y=z=\dfrac{3}{4}\)

10 tháng 6 2023

thank