Gọi x1, x2 là nghiệm của phương trình x2+ 2015x + 1 = 0; x3, x4 là nghiệm của phương trình x2+ 2016x + 1 = 0. Tính giá trị của biểu thức: ( x1 + x3)( x2 + x3)( x1 – x4)( x2 – x4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
$\Delta=2015^2-4.2013.2=2011^2$
Do đó pt có 2 nghiệm:
$x_1=\frac{2015+2011}{2.2013}=1$
$x_2=\frac{2015-2011}{2.2013}=\frac{2}{2013}$
Đáp án B.
Câu 4:
Theo định lý Viet, tổng các nghiệm của pt là:
$S=\frac{-b}{a}=\frac{-3}{1}=-3$
Đáp án B.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)
\(\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\left(-2\right)-\left(-\dfrac{5}{3}\right)}{-2-\left(-\dfrac{5}{3}\right)+1}=...\)
a: Thay x=-3 vào pt, ta được:
9+6m+2m+1=0
=>8m+10=0
hay m=-5/4
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m+1\right)\)
\(=4m^2-8m-4\)
\(=4\left(m-2\right)\left(m+1\right)\)
Để phương trình có hai nghiệm thì (m-2)(m+1)>=0
=>m>=2 hoặc m<=-1
c: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=16\)
\(\Leftrightarrow\left(2m\right)^2=16\)
=>2m=4 hoặc 2m=-4
=>m=2(nhận) hoặc m=-2(nhận)
Đáp án B
P T ⇔ 2 2 x 2 − 5 2 x + 2 = 0 ⇔ 2 x = 2 2 x = 1 2 ⇔ x = 1 x = − 1 ⇒ x 1 = − 1 x 2 = 1 ⇒ x 2 − x 1 = 2.