Question 1:Fill the suitable number in the following blank?.\(343=\)_____\(3\)Question 2:The positive value of such that \(\left|2x-3\right|+7=16\) is _______Question 3:Given a function \(g\left(x\right)=2\sqrt{x-7}\) . Find the value of \(g\left(11\right)\)?Answer: The value of \(g\left(11\right)\) is ._________Question 4:Find the value of such that \(0,008=\left(0,2\right)^x\).Answer: . \(x=\)_________Question 5:Given a function\(g\left(x\right)=\frac{2}{3-x}\) . Find the value...
Đọc tiếp
Question 1:
Fill the suitable number in the following blank?
.\(343=\)_____\(3\)
Question 2:
The positive value of such that \(\left|2x-3\right|+7=16\) is _______
Question 3:
Given a function \(g\left(x\right)=2\sqrt{x-7}\) . Find the value of \(g\left(11\right)\)?
Answer: The value of \(g\left(11\right)\) is ._________
Question 4:
Find the value of such that \(0,008=\left(0,2\right)^x\).
Answer: . \(x=\)_________
Question 5:
Given a function\(g\left(x\right)=\frac{2}{3-x}\) . Find the value of .\(g\left(1\right)+g\left(2\right)\)
Answer: The value of \(g\left(1\right)+g\left(2\right)\) is ._______
Question 6:
Suppose that \(\frac{7y-x}{2x+y}=\frac{1}{3}\) then the ratio of \(x\) to \(y\) is .________
Question 7:
If \(x\) is directly proportional to \(y\) with the scaling factor is 8, \(z\) is directly proportional to \(x\) with the scaling factor is 4.
Then \(z\) is directly proportional to \(y\) with the scaling factor is______ .
Question 8:
The maximum value of \(A=\frac{6}{2.\left(x-3\right)^2+3}\) is .______
Question 10:
Suppose that\(\frac{7-3x}{5}=\frac{y+4}{3}=\frac{6x-y}{5}\) . Find the ratio of \(y\) to \(x\)
Answer: The ratio of \(y\) to \(x\) is .______________-
(write your answer by decimal in simplest form)
Mình nhầm! -22 mới đúng! K = -22 nha
mấy cái bạn kia đưa ra kết quả sai rồi bạn xem mình giải nhé
người ta cho x tỉ lệ thuận với y theo hệ số k nên ta sẽ có:
x=ky
vậy thì suy ra \(\frac{x}{y}=k\)rồi bây giờ trực tiếp thay vào nhé:
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{3x_1}{3y_1}=\frac{6x_2}{6y_2}=\frac{3.6}{3y_1}=\frac{6.4}{6y_2}=\frac{18-24}{3y_1-6y_2}=\frac{-6}{22}=\frac{-3}{11}=k\)