Cho phương trình ẩn x : x2 - (3m - 2)x + 3m - 3 = 0
a) Chứng tỏ phương trình luôn có 2 nghiệm x1 ; x2 với mọi giá trị của m
b) Tìm giá trị của m thỏa hệ thức : x12 + x22 = 13 - x1x2
Mọi người giải nhanh giúp mình với ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Δ=(m+1)^2-4m=(m-1)^2>=0
=>Phương trình luôn có nghiệm
b: x1^2+x2^2+3x1x2=5
=>(x1+x2)^2+x1x2=5
=>(m+1)^2+m=5
=>m^2+3m-4=0
=>(m+4)(m-1)=0
=>m=1 hoặc m=-4
\(\Delta=\left(m+4\right)^2-4\left(3m+3\right)=m^2-4m+4=\left(m-2\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+4\\x_1x_2=3m+3\end{matrix}\right.\)
\(x_1^2-x_1=x_2-x_2^2+8\)
\(\Leftrightarrow x_1^2+x_2^2-\left(x_1+x_2\right)-8=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)-8=0\)
\(\Leftrightarrow\left(m+4\right)^2-2\left(3m+3\right)-\left(m+4\right)-8=0\)
\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
a) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)
\(=\left(2m-2\right)^2+4m\)
\(=4m^2-8m+4+4m\)
\(=4m^2-4m+4\)
\(=4m^2-4m+1+3\)
\(=\left(2m-1\right)^2+3>0\forall x\)
Do đó: Phương trình luôn có hai nghiệm x1,x2 với mọi m(Đpcm)
b) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=-m\end{matrix}\right.\)
Ta có: \(y_1+y_2=x_1+\dfrac{1}{x_2}+x_2+\dfrac{1}{x_1}\)
\(=\left(x_1+x_2\right)+\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)\)
\(=\left(2m-2\right)+\dfrac{2m-2}{-m}\)
\(=2m-2-\dfrac{2m-2}{m}\)
\(=\dfrac{2m^2-2m-2m+2}{m}\)
\(=\dfrac{2m^2-4m+2}{m}\)
\(=\dfrac{2\left(m^2-2m+1\right)}{m}\)
\(=\dfrac{2\left(m-1\right)^2}{m}\)
Ta có: \(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)
\(=x_1x_2+2+\dfrac{1}{x_1x_2}\)
\(=-m+2+\dfrac{1}{-m}\)
\(=-m+2-\dfrac{1}{m}\)
\(=\dfrac{-m^2}{m}+\dfrac{2m}{m}-\dfrac{1}{m}\)
\(=\dfrac{-m^2+2m-1}{m}\)
\(=\dfrac{-\left(m-1\right)^2}{m}\)
Phương trình đó sẽ là:
\(x^2-\dfrac{2\left(m-1\right)^2}{m}x-\dfrac{\left(m-1\right)^2}{m}=0\)
Đề là \(x^2-\left(m+5\right)x+3m+6=0\) đúng không nhỉ?
a. Ta có:
\(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m-1\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Để \(x_1;x_2\) là độ dài 2 cạnh góc vuông thì trước hết \(x_1;x_2\) dương
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m+5>0\\3m+6>0\end{matrix}\right.\) \(\Rightarrow m>-2\)
Khi đó áp dụng định lý Pitago:
\(x_1^2+x_2^2=25\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)
\(\Leftrightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\)
\(\Leftrightarrow m^2+6m-12=0\Rightarrow\left[{}\begin{matrix}m=-3-\sqrt{21}< -2\left(loại\right)\\m=-3+\sqrt{21}\end{matrix}\right.\)
Vì 1 < x1 < x2 nên pt đã cho có 2 nghiệm dương phân biệt
Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\x< 0\left(h\right)x>3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9>0\left(LuonĐúng\right)\\x>3\end{cases}}\)
\(\Leftrightarrow x>3\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)
Vì \(1< x_1< x_2\Rightarrow\hept{\begin{cases}x_1-1>0\\x_2-1>0\end{cases}}\)
\(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)>0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1>0\)
\(\Leftrightarrow m^2-3m-2m+3+1>0\)
\(\Leftrightarrow m^2-5m+4>0\)
\(\Leftrightarrow\orbr{\begin{cases}m< 1\\m>4\end{cases}}\)
Mà m > 3 nên m > 4
Vậy m > 4
a) Để phương trình \(x^2-2m^2x+3m=0\) có nghiệm x=3 thì
Thay x=3 vào phương trình \(x^2-2m^2x+3m=0\), ta được:
\(3^2-2\cdot m^2\cdot3+3m=0\)
\(\Leftrightarrow-6m^2+3m+9=0\)
\(\Leftrightarrow-6m^2-6m+9m+9=0\)
\(\Leftrightarrow-6m\left(m+1\right)+9\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(-6m+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\-6m+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\-6m=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: Khi \(m\in\left\{-1;\dfrac{3}{2}\right\}\) thì phương trình có nghiệm là x=3
b) Để phương trình có nghiệm là x=2 thì
Thay x=2 vào phương trình \(x^2-2m^2x+3m=0\), ta được:
\(2^2-2m^2\cdot2+3m=0\)
\(\Leftrightarrow-4m^2+3m+4=0\)
\(\Leftrightarrow-\left(4m^2-3m-4\right)=0\)
\(\Leftrightarrow-\left(4m^2-2\cdot2m\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{73}{16}\right)=0\)
\(\Leftrightarrow-\left(2m-\dfrac{3}{4}\right)^2+\dfrac{73}{16}=0\)(vô lý)
Vậy: Không có giá trị nào của m để phương trình \(x^2-2m^2x+3m=0\) có nghiệm là x=2
Cái này thì bạn cứ thế x hoặc m vào giải ra thui là được mà :v