Cho x1 + x2 = 1-m; x1x2 = -m^2 - 2.
tìm m để T = (x1/x2)^3 + (x2/x1)^3 đạt giá trị lớn nhất
Mình cần gấp huhu :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhiệm là cái gì? Đề ko rõ nữa vì M = (1 - x2)x1 + (1 - x1)x2 chả có gì để cm cả :v
Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(m+1)^2+8(m-1)>0$
$\Leftrightarrow m^2+10m-7>0(*)$
Áp dụng định lý Viet:
$x_1+x_2=\frac{m+1}{2}$
$x_1x_2=\frac{m-1}{2}$
Khi đó:
$x_1-x_2=x_1x_2$
$\Rightarrow (x_1-x_2)^2=(x_1x_2)^2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1x_2)^2$
$\Leftrightarrow (\frac{m+1}{2})^2-2(m-1)=(\frac{m-1}{2})^2$
$\Leftrightarrow m=2$ (thỏa mãn $(*)$)
Vậy......
a: Khi m=4 thì phương trình trở thành \(x^2-4x+3=0\)
=>(x-3)*(x-1)=0
=>x=3 hoặc x=1
b: \(x_1+x_2=m\)
\(x_1x_2=m-1\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)=m^2-2m+2\)
\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\)
\(=\left(m^2-2m+2\right)^2-2\cdot\left(m-1\right)^2\)
\(=m^4+4m^2+4-4m^3+4m^2-8m-2m^2+4m-2\)
\(=m^4-4m^3+2m^2-4m+2\)
Δ=(2m)^2-4(-2m-1)
=4m^2+8m+4=(2m+2)^2
Để pt có hai nghiệm pb thì 2m+2<>0
=>m<>-1
x1+x2=-2m; x1x2=-2m-1
x1^2+x2^2=(x1+x2)^2-2x1x2
=(-2m)^2-2(-2m-1)
=4m^2+4m+2
\(\dfrac{6}{x1}=\dfrac{x1+1}{x2}\)
=>x1^2+x1-6x2=0
=>4m^2+4m+2-x2^2+-2m-x2-6x2=0
=>-x2^2-7x2+4m^2+2m+2=0
=>\(x_2^2+7x_2-4m^2-2m-2=0\)(1)
\(\text{Δ}=7^2-4\left(-4m^2-2m-2\right)\)
\(=49+16m^2+8m+8\)
=16m^2+8m+57
=16m^2+8m+1+56=(4m+1)^2+56>=56>0
=>(1)luôn có nghiệm
a: \(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
để phương trình có hai nghiệm phân biệt thì m-2<>0
hay m<>2
Theo đề, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1-x_2=5\\x_1x_2=m-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_1=m+5\\x_2=x_1-5\\x_1x_2=m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+5}{2}\\x_2=\dfrac{m+5}{2}-5=\dfrac{m-5}{2}\\x_1x_2=m-1\end{matrix}\right.\)
\(\Leftrightarrow m^2-25=4m-4\)
\(\Leftrightarrow m^2-4m-21=0\)
=>(m-7)(m+3)=0
=>m=7 hoặc m=-3
c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
Giả sử phương trình đã cho có 2 nghiệm x 1 và x 2 , theo hệ thức Vi-ét ta có:
x 1 + x 2 = -b/a = -[-2(m + 1)]/1 = 2(m + 1)/1 = 2(m + 1)
x 1 x 2 = c/a = ( m 2 + m - 1)/1 = m 2 + m – 1
x 1 2 + x 2 2 = x 1 + x 2 2 – 2 x 1 x 2 = 2 m + 2 2 – 2( m 2 + m – 1)
= 4 m 2 + 8m + 4 – 2 m 2 – 2m + 2 = 2 m 2 + 6m + 6
\(x^2-2mx+m^2-m-1=0\)(1)
có \(\Delta=\left(-2m\right)^2-4.\left(m^2-m-1\right)=4m^2-4m^2+4m+4\)
=\(4m+4\)
để pt (1) có nghiệm x1,x2 khi \(\Delta\ge0< =>4m+4\ge0< =>m\ge-1\)
theo hệ vi ét ta có \(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m^2-m-1\end{matrix}\right.\)
có \(x1\left(x1+2\right)+x2\left(x2+2\right)=10< =>x1^2+2x1+x2^2+2x2=10\)
<=>\(\left(x1^2+x2^2\right)+2.\left(x1+x2\right)=10< =>\left[\left(x1+x2\right)^2-2x1x2\right]+2.2m=10\)
<=>\(\left(2m\right)^2-2.\left(m^2-m-1\right)+4m=10< =>4m^2-2m^2+2m+2+4m-10=0\)
<=>\(2m^2+6m-8=0\)
\(\Delta1=6^2-4\left(-8\right).2=100>0\)
=>m1=\(\dfrac{-6+\sqrt{100}}{2.2}=1\left(TM\right)\)
m2=\(\dfrac{-6-\sqrt{100}}{2.2}=-4\)(loại)
vậy m=1 thì pt (1) có nghiệm x1, x2 thỏa mãn x1(x1+2)+x2(x2+2)=10
khó alwms
Do \(x_1+x_2=1-m;x_1x_2=-m^2-2\) nên x1; x2 là 2 nghiệm của phương trình
\(x^2-\left(1-m\right)x-\left(m^2+2\right)=0\)
Theo Viete ta có:\(ac=-m^2-2< 0\) nên phương trình có 2 nghiệm trái dấu
Đặt \(\left(\frac{x_1}{x_2}\right)^3=-t< 0\Rightarrow\left(\frac{x_2}{x_1}\right)^3=\frac{-1}{t}\)
Ta có:\(T=-t-\frac{1}{t}\) ( Mình đoán không phải (x1/x2)3+(x2/x1)3 mà là (x1/x2)3-(x2/x1)3 nhé )
\(=-\left(t+\frac{1}{t}\right)\le2\)
Đẳng thức xảy ra bạn tự tìm nhé !