Cho x+y=20; x.y=-44. Tính A=x^5+y^5
thanks các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Vì x,y là hai số nguyên dương => /x/=x ; /y/=y
=> /x/+/y/=x+y=20
Vay x+y=20
b. Vì x,y là hai số nguyên âm => /x/=-x ; /y/=-y
=> /x/+/y/ =-x + (-y)=-(x+y)=-20
Vậy x+y=-20
k cho chị nha
.
.
a) x,y là số nguyên dương (x>0 ; y>0)=> |x| =x và |y|=y
ta có |x| + |y| = 20 => x + y = 20
b) x,y là số nguyên âm (x<0 ; y<0) => |x| = - x và |y| = -y
ta có |x| + |y| = 20 => - x - y =20=> -(x+y) = 20 => x+y = -20
Vi x,y la hai so nguyen duong=>|x|=x;|y|=y=>|x|+|y|=x+y=20 Vay x+y=20 NHO **** MINH NHA
bạn nè, giá trị tuyệt đối của x thì bằng với x nếu x là số dương nhé.
Áp dụng bất đẳng thức cô si cho 2 số thực không âm ta có:
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}\times4\left(y-1\right)}=4x\) (1)
\(\frac{y^2}{x-1}+4\left(x-1\right)\ge2\sqrt{\frac{y^2}{x-1}\times4\left(x-1\right)}=4y\) (2)
Cộng (1) và (2) vế theo vế , ta được:
\(P+4y-4+4x-4\ge4x+4y\)
\(\Rightarrow P\ge8\)
Dấu "\(=\)" xảy ra khi : \(x=y=2\)
Vậy giá trị nhỏ nhất của P=\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\) là 8 khi \(x=y=2\)
Cần chứng minh \(P=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\) thật vậy:
Đặt \(\left\{\begin{matrix}x-1=a\\y-1=b\end{matrix}\right.\)\(\left(a,b>0\right)\) ta có bđt cần cm tương đương:
\(\Leftrightarrow\left(a^2+2a+1\right)a+\left(b^2+2b+1\right)b\ge8ab\)
\(\Leftrightarrow\)\(a^3+2a^2+a+b^3+2b^2+b\ge8ab\)
Áp dụng BĐT AM-GM ta có:
\(2a^2+2b^2\ge2\sqrt{2a^2\cdot2b^2}=4ab\)
\(a^3+b^3+a+b\ge4\sqrt[4]{a^4b^4}=4ab\)
Cộng theo vế ta có đpcm
Vậy GTNN của BT là 8
Lời giải:
Bài 1:
\((x+\sqrt{x^2+2016})(y+\sqrt{y^2+2016})=2016(\star)\)
\(\Leftrightarrow (x+\sqrt{x^2+2016})(x-\sqrt{x^2+2016})(y+\sqrt{y^2+2016})=2016(x-\sqrt{x^2+2016})\)
\(\Leftrightarrow -2016(y+\sqrt{y^2+2016})=2016(x-\sqrt{x^2+2016})\)
\(\Leftrightarrow y+\sqrt{y^2+2016}=\sqrt{x^2+2016}-x(1)\)
Tương tự nhưng nhân \(y-\sqrt{y^2+2016}\) vào PT \((\star)\)
\(\Rightarrow x+\sqrt{x^2+2016}=\sqrt{y^2+2016}-y(2)\)
Từ \((1),(2)\Rightarrow x=-y\)
\(\Rightarrow (x+\sqrt{x^2+2016})(\sqrt{x^2+2016}-x)=2016\Leftrightarrow 2016=2016\) ( luôn đúng)
Vậy PT có nghiệm \((x,y)=(x,-x)\) với \(x\in\mathbb{R}\)
Bài 2:
Do \((3x^2-2)^2,y^4,y^2\geq 0\) với mọi \(x,y\in\mathbb{R}\) nên:
Ta có \(M=9x^4+7y^4-12x^2+4y^2+5=(3x^2-2)^2+7y^4+4y^2+1\geq 1\)
Vậy \(M_{\min}=1\Leftrightarrow (x,y)=\left(\pm\sqrt{\frac{2}{3}},0\right)\)
Ta có: *x2+y2=(x+y)2-2xy=202-2.(-44)=488
*x3+y3=(x+y)(x2-xy+y2)=20.[488-(-44)]=10640
Suy ra: (x2+y2)(x3+y3)=x5+x2y3+x3y2+y5=x5+y5+x2y2.(x+y)
=>488.10640=x5+y5+(-44)2.20
=>5192320=x5+y5+38720
=>x5+y5=5153600
chỗ x^3+y^3=10740 mà nhưng thanks bạn nhiều nhé