TÌM số hữu tỷ x , biết ; x-2 nhân căn bậc 2 của x =0 (x>=0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(x\ne0\)
\(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\\ \Leftrightarrow6x^2-12-x=0\\ \Leftrightarrow6x^2-9x+8x-12=0\\ \Leftrightarrow3x\left(2x-3\right)+4\left(2x-3\right)=0\\ \Leftrightarrow\left(3x+4\right)\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{3}{2}\end{matrix}\right.\left(tm\right)}\)
\(\frac{x+\frac{1}{2}}{x-\frac{7}{3}}>0\)
<=> x + \(\frac{1}{2}\) và x - \(\frac{7}{3}\) cùng dấu
<=> x + \(\frac{1}{2}\) < 0 hoặc x - \(\frac{7}{3}\) > 0
<=> x < \(-\frac{1}{2}\) hoặc x > \(\frac{7}{3}\)
Bạn say hay mình ngáo ?
Hoa mắt trăng ?
Đề bài sai hay mình tính sai ?
Đề bài ngu hay mình ngu ?
Đó vẫn là 1 thắc mắc chưa có lời giải đáp :) ^_^
do x - y = xy
=> x = xy + y
=> x = y(x + 1)
=> x : y = x + 1
mà theo đề bài ta có x - y = x : y
=> x - y = x + 1
=> x - (x + 1) = y
=> y = -1
nếu y = -1 thay vào ta có x - (-1) = x(-1)
=> x + 1 = -x
=> -x - x = 1
=> -2x = 1
=> x = \(-\frac{1}{2}\)
vậy y = -1 và x = \(-\frac{1}{2}\)
Ta có : \(x-y=xy\Rightarrow x=xy+y\)
\(x=y\left(x+1\right)\)
\(\Rightarrow x\div y=x+1\)(vì y khác 0)
Ta có : \(x\div y=x-y\Rightarrow x+1=x-y\)
\(\Rightarrow y=-1\)
Thay\(y=-1\) vào \(x-y=xy\), ta được\(x-\left(-1\right)=x\cdot\left(-1\right)\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(\hept{\begin{cases}x=-\frac{1}{2}\\y=-1\end{cases}}\)
Từ ba đẳng thức ta có
3x+3y+3z=12
=>x+y+z=4
<=>x+2y-y+z=4
<=>5-y+z=4
<=>z-y=-1
Mà y+2z=-7
Cộng vế theo vế ta được
3z=-8
=>z=-8/3
=>y=...
=>x=...
(Phần dưới tự tính cho não nó thông)
Ta có \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow\)5.8=x(1-2y)
\(\Rightarrow\)40 =x(1-2y)
Lại có :40=1.40= \(-1.\left(-40\right)=2.20=-2.\left(-20\right)=4.10\)\(=-4.\left(-10\right)=5.8=-5.\left(-8\right)\)
Mà 1-2y là số lẻ nên (1-2y)\(\in\)ước lẻ của 40
Ta có bảng sau
x | 1-2y | y |
40 | 1 | 0 |
-40 | -1 | 1 |
8 | 5 | -2 |
-8 | -5 | 3 |
nhé!
\(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\) (ĐK: \(x\ne0\))
\(\Rightarrow\dfrac{x^2}{2x}-\dfrac{2}{2x}=\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x^2-2}{2x}=\dfrac{1}{12}\)
\(\Rightarrow12\left(x^2-2\right)=2x\)
\(\Rightarrow12x^2-24=2x\)
\(\Rightarrow12x^2-2x-24=0\)
\(\Rightarrow2\left(6x^2-x-12\right)=0\)
\(\Rightarrow2\left(6x^2+8x-9x-12\right)=0\)
\(\Rightarrow2\left[2x\left(3x+4\right)-3\left(3x+4\right)\right]=0\)
\(\Rightarrow2\left(3x+4\right)\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x=-4\\2x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\left(tm\right)\\x=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{4}{3};\dfrac{3}{2}\right\}\)
\(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x^2}{2x}-\dfrac{2}{2x}=\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x^2-2}{2x}=\dfrac{1}{12}\)
\(\Rightarrow12\left(x^2-2\right)=2x\)
\(\Rightarrow12x^2-2x-24=0\)
\(\Rightarrow12x^2-18x+16x-24=0\)
\(\Rightarrow6x\left(2x-3\right)+8\left(2x-3\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(6x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\6x+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{4}{3}\end{matrix}\right.\)