cho x,y thay đổi thỏa mãn x >=2 ; x+y >=3. CMR: x2 + y2 >=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao đa số mọi người toàn copy lên mạng hoặc vô câu hỏi tương tự vại
1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2])
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3.
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị.
2. Đặt x = cosα và y = sinα (với α trên [0,3π/2])
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α)
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1.
Ta áp dụng P' = 0 tiếp.
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+4\geq 2\sqrt{4x^2}=2|2x|\geq 4x$
$y^2+1\geq 2\sqrt{y^2}=2|y|\geq 2y$
$\Rightarrow x^2+y^2+5\geq 4x+2y=2(x+y)+2x\geq 2.3+2.2=10$
$\Rightarrow x^2+y^2\geq 5$
Ta có đpcm
Dấu "=" xảy ra khi $(x,y)=(2,1)$
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5}{16}\left(2x+y\right)\ge2\sqrt{\dfrac{3}{16}.3}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\).
Đẳng thức xảy ra khi x = 1; y = 2.
\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)
\(M=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5\left(2x+y\right)}{16}\ge2\sqrt{\dfrac{9\left(2x+y\right)}{16\left(2x+y\right)}}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{11}{4}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
1 cách giải
+Nếu \(y\le0\) thì \(x\ge3-y\ge3\Rightarrow x^2\ge9\Rightarrow x^2+y^2>5\)
+Xét y > 0
\(x+y\ge3\Rightarrow y\ge3-x\Rightarrow y^2\ge\left(3-x\right)^2\)
\(x^2+y^2\ge x^2+\left(3-x\right)^2=2x^2-6x+9=2\left(x-2\right)^2+2x+1\)
\(\ge0+2.2+1=5\)
Dấu "=" xảy ra khi \(x=2;\text{ }y=1\)