Bài tập 5: Tính giá trị của biểu thức:
a) P(x) = ax^2 + bx +c tại x = 1; x =-1.
b) x^2 + x^ + x^6 +... +x^100 tại x = -1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x\left(x-y\right)+y\left(x+y\right)\)
\(=x^2-xy+xy+y^2\)
\(=x^2+y^2\)
=100
b: \(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x^3-xy-x^3-x^2y+x^2y-xy\)
\(=-2xy\)
a) Thay giá trị \(a = 2\), \(b = - 3\) vào biểu thức đã cho, ta có:
\(M = 2(a + b) = 2.(2 + ( - 3)) = 2.(2 - 3) = 2.( - 1) = - 2\).
b) Thay giá trị \(x = - 2\), \(y = - 1\), \(z = 4\) vào biểu thức đã cho, ta có:
\(N = - 3xyz = ( - 3). (- 2). (- 1).4 = 6. (- 1).4 = ( - 6).4 = - 24\).
c) Thay giá trị \(x = - 1\); \(y = - 3\) vào biểu thức đã cho, ta có:
\(P = - 5{x^3}{y^2} + 1 = - 5.{( - 1)^3}.{( - 3)^2} + 1 = (- 5). (- 1).9 + 1 = 5.9 + 1 = 45 + 1 = 46\).
a) Ta có: \(A=-34x+34y\)
\(=-34\left(x-y\right)\)
Thay x-y=2 vào biểu thức A=-34(x-y), ta được:
\(A=-34\cdot2=-68\)
Vậy: Khi x-y=2 thì A=68
b) Ta có: \(B=ax-ay+bx-by\)
\(=a\left(x-y\right)+b\left(x-y\right)\)
\(=\left(x-y\right)\left(a+b\right)\)
Thay a+b=-7 và x-y=-1 vào biểu thức \(B=\left(x-y\right)\left(a+b\right)\), ta được:
\(B=-1\cdot\left(-7\right)=7\)
Vậy: Khi a+b=-7 và x-y=-1 thì B=7
`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`
`b)` Với `x ne -1;x ne -5` có:
`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`
`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`
`A=[x^2-3x-4]/[(x+1)(x+5)]`
`A=[(x+1)(x-4)]/[(x+1)(x+5)]`
`A=[x-4]/[x+5]`
`c)` Với `x ne -5; x ne -1; x ne 4` có:
`P=A.B=[x-4]/[x+5].[-10]/[x-4]`
`=[-10]/[x+5]`
Để `P` nguyên `<=>[-10]/[x+5] in ZZ`
`=>x+5 in Ư_{-10}`
Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`
`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)
ax^3-bx+c
Thay đa thức ax^3-bx+c tại x=-1 và x=1
a.(-1)^3-b.1+c
xog hết bt lm
\(a,=5\left(x^2+2xy+y^2\right)-10y^2+5=5\left(x+y\right)^2-10y^2+5\\ =5\left(1+2\right)^2-10\cdot4+5=45-40+5=10\\ b,=7\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(7-x+y\right)\\ =\left(2-2\right)\left(7-2+2\right)=0\)
b: \(=7\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(7-x+y\right)=0\)
a.Thế \(x=1\) vào P ta được:
\(P\left(1\right)=a.1^2+b.1+c=a+b+c\)
Thế \(x=-1\) vào P ta được:
\(P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)
b.\(x^2+x^4+x^6+...+x^{100}\)
Thế \(x=-1\) ta được:
\(\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+...+\left(-1\right)^{100}\)
\(=1+1+1+...+1=50\)