bài 9:tính giá trị
B=\(x^{100}\)-100.\(x^{99}\)+100.\(x^{98}\)-...100\(x^2\)-100x+5 với x=99; x+1=100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
A(x)=\(x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x+1\)
= \(x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}-\left(99+1\right)x^{96}+...+\left(99+1\right)x-1\)
thay 99=x ta được:
A(x)=\(x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...+\left(x+1\right)x-1\)
= \(x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...+x^2+x-1\)
=x-1
thay x=99 vào đa thức A(x) ta được :
A(99)=99-1
=98
vậy tại x=99 thì giá trị của A(x)=98
bài 2:
tại x=1 thay vào đa thức P(x) ta được :
P(1)=\(100.1^{100}+99.1^{99}+...+2.1^2+1\)
= 100+99+...+2+1
=5050
vậy tại x=1 thì giá trị của P(x)=5050
Khi x=1 thì
B(1)=1+2+...+100=5050
Khi x=-1 thì
B(-1)=-1+2-3+4-5+6-...-99+100
=1+1+...+1
=50
x=99
=>x+1=100
thay x+1=100 và 99=x vào B ta được:
x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1
=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1
=x-1
=99-1
=98
Vậy B=98
1,+) Thay x = 5 vào biểu thức A, ta có:
A = 4.52 - 5.|5| + 2.|3 - 5|
A = 4.25 - 5.5 + 2.2
A = 100 - 25 + 4
A = 75 + 4 = 79
Thay x = 3 vào biểu thức A, ta có:
A = 4.32 - 5.|3| + 2.|3 - 3|
A = 4.9 - 5.3 + 2.0
A = 36 - 15 = 21
+) Ta có: B = xy + x2y2 + x3y3 + ... + x100y100
B = xy + (xy)2 + (xy)3 + ... + (xy)100
Thay x = 1; y= -1 vào biểu thức B, ta có:
B = 1.(-1) + [1.(-1)]2 + [1.(-1)]3 + ... + [1.(-1)]100
B = -1 + 1 - 1 + ... + 1
B = 0
+) Thay x = 1 vào C, ta có:
C = 100.1100 + 99.199 + 98.198 + ... + 2.12 + 1
C = 100 + 99 + 98 + ... + 2 + 1
C = (100 + 1).[(100 - 1) : 1 + 1] : 2
C = 101.100 : 2
C = 5050
+) Thay x = 99 vào biểu thức D, ta có:
D = 9999 - 100.9998 + 100.9997 - 100.9996 + ... + 100.99 - 1
D = 9999 - (99 + 1).9998 + (99 + 1).9997 - (99 + 1).9996 + ... + (99 + 1).99 - 1
D = 9999 - 9999 - 9998 + 9998 + 9997 - 9997 - 9996 + ... + 992 + 99 - 1
D = 99 - 1 = 98
a:
Đặt A=x+x^2+x^3+...+x^99+x^100
Khi x=-1 thì A=(-1)+(-1)^2+(-1)^3+...+(-1)^100
=(-1+1)+(-1+1)+...+(-1+1)
=0
b: Đặt B=x^2+x^4+...+x^100
Khi x=-1 thì B=(-1)^2+(-1)^4+...+(-1)^100
=1+1+...+1
=50
Ta có : \(x=99\Rightarrow x+1=100\)
\(\Leftrightarrow P\left(99\right)=x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-...+\left(x+1\right)x-1\)
\(\Leftrightarrow x^{99}+x^{98}+x^{97}+...+x^2+x-1\)
\(\Leftrightarrow x-1\) Thay x = 99 vào x - 1 ta có
\(\Leftrightarrow P\left(99\right)=99-1=98\)
Câu 2 tham khảo tại
Câu hỏi của Hang Le - Toán lớp 7 | Học trực tuyến
Học tốt!!!!
Thay x+1=100 vào B , ta được :
B = x100-(x+1).x99+(x+1).x98-...+(x+1).x2-(x+1).x+5
=> B = x100 -x100-x99+x99+x98-...+x3+x2-x2-x+5
=> B = 5-x=5-99=-94
Ta có \(B=x^{100}-\left(x+1\right).x^{99}+\left(x+1\right).x^{98}-...+\left(x+1\right)x^2-\left(x+1\right)x+5\)
\(B=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-...+x^3+x^2-x^2-x+5\)
\(B=-x+5\)
\(B=-99+5=-94\)