K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

mình ko hiểu đề bài của bạn, bạn có chép sai đề ko

1 tháng 9 2017

1) \(0\div x=0\)

\(\Rightarrow x=0\)

2) \(x\div2=x\div3\)

\(\Rightarrow x\div2-x\div3=0\)

\(\Rightarrow\left(x-x\right).\left(2\div3\right)=0\)

\(\Rightarrow x=\varphi\)

a: =>2sin(x+pi/3)=-1

=>sin(x+pi/3)=-1/2

=>x+pi/3=-pi/6+k2pi hoặc x+pi/3=7/6pi+k2pi

=>x=-1/2pi+k2pi hoặc x=2/3pi+k2pi

b: =>2sin(x-30 độ)=-1

=>sin(x-30 độ)=-1/2

=>x-30 độ=-30 độ+k*360 độ hoặc x-30 độ=180 độ+30 độ+k*360 độ

=>x=k*360 độ hoặc x=240 độ+k*360 độ

c: =>2sin(x-pi/6)=-căn 3

=>sin(x-pi/6)=-căn 3/2

=>x-pi/6=-pi/3+k2pi hoặc x-pi/6=4/3pi+k2pi

=>x=-1/6pi+k2pi hoặc x=3/2pi+k2pi

d: =>2sin(x+10 độ)=-căn 3

=>sin(x+10 độ)=-căn 3/2

=>x+10 độ=-60 độ+k*360 độ hoặc x+10 độ=240 độ+k*360 độ

=>x=-70 độ+k*360 độ hoặc x=230 độ+k*360 độ

e: \(\Leftrightarrow2\cdot sin\left(x-15^0\right)=-\sqrt{2}\)

=>\(sin\left(x-15^0\right)=-\dfrac{\sqrt{2}}{2}\)

=>x-15 độ=-45 độ+k*360 độ hoặc x-15 độ=225 độ+k*360 độ

=>x=-30 độ+k*360 độ hoặc x=240 độ+k*360 độ

f: \(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=-\dfrac{1}{\sqrt{2}}\)

=>x-pi/3=-pi/4+k2pi hoặc x-pi/3=5/4pi+k2pi

=>x=pi/12+k2pi hoặc x=19/12pi+k2pi

12 tháng 9 2023

g) \(3+\sqrt[]{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=-\dfrac{3}{\sqrt[]{5}}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin\left[arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)\right]\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\\x+\dfrac{\pi}{3}=\pi-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)

h) \(1+sin\left(x-30^o\right)=0\)

\(\Leftrightarrow sin\left(x-30^o\right)=-1\)

\(\Leftrightarrow sin\left(x-30^o\right)=sin\left(-90^o\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-30^o=-90^0+k360^o\\x-30^o=180^o+90^0+k360^o\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^o\\x=300^0+k360^o\end{matrix}\right.\)

\(\Leftrightarrow x=-60^0+k360^o\)

31 tháng 5 2018

\(x^3-x-1=0\)

\(\Leftrightarrow x^3-x=1\)

\(\Leftrightarrow x^3=1+x\)

\(\Leftrightarrow x^2=\frac{1+x}{x}\)

\(\Leftrightarrow x^2=\frac{1}{x}+1\)

=> ĐKXĐ:  \(x\ne0\)

Vì x khác 0 nên với mọi số thực, ta luôn có:

\(\frac{1}{x}\le1\)

\(\Rightarrow1+\frac{1}{x}\ge0\) (Nếu x âm) và    \(1+\frac{1}{x}\le2\) ( Nếu x dương)

Dấu "=" xảy ra khi x = -1                     Dấu "=" xảy ra khi x = 1

\(\Rightarrow0\le1+\frac{1}{x}\le2\)

Vì  \(1+\frac{1}{x}=x^2\)

\(\Rightarrow0\le x^2\le2\)

   \(x^2\ge0\) => Dấu "=" xảy ra khi x = 0 (Vô lí vì không thỏa ĐKXĐ)

=>  \(x^2>0\Leftrightarrow x>0\)

3 tháng 9 2015

C1: D={1,2,3,4,…}

C2: D={n\(\in\)N*/0:n=0}

25 tháng 9 2016

a)x.(x+2)+x-2=0

\(\Leftrightarrow x^2+2x+x-2=0\)

\(\Leftrightarrow x^2+3x-2=0\)

\(\Delta=3^2-\left(-4\left(1.2\right)\right)=17\)

\(x_{1,2}=\frac{-3\pm\sqrt{17}}{2}\)

 

25 tháng 9 2016

mk nghĩ câu a sai đề

21 tháng 10 2023

a: \(cos\left(2x-\dfrac{\Omega}{6}\right)+cos\left(x+\dfrac{\Omega}{3}\right)=0\)

=>\(cos\left(2x-\dfrac{\Omega}{6}\right)+sin\left(\dfrac{\Omega}{6}-x\right)=0\)

=>\(cos\left(2x-\dfrac{\Omega}{6}\right)=-sin\left(\dfrac{\Omega}{6}-x\right)=sin\left(x-\dfrac{\Omega}{6}\right)\)

=>\(cos\left(2x-\dfrac{\Omega}{6}\right)=cos\left(\dfrac{\Omega}{2}-x+\dfrac{\Omega}{6}\right)\)

=>\(cos\left(2x-\dfrac{\Omega}{6}\right)=cos\left(-x+\dfrac{2}{3}\Omega\right)\)

=>\(\left[{}\begin{matrix}2x-\dfrac{\Omega}{6}=-x+\dfrac{2\Omega}{3}+k2\Omega\\2x-\dfrac{\Omega}{6}=x-\dfrac{2}{3}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3x=\dfrac{5}{6}\Omega+k2\Omega\\x=-\dfrac{1}{2}\Omega+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}\\x=-\dfrac{1}{2}\Omega+k2\Omega\end{matrix}\right.\)

b: \(cos\left(2x+30^0\right)+sin\left(x-30^0\right)=0\)

=>\(cos\left(2x+30^0\right)=-sin\left(x-30^0\right)\)

=>\(cos\left(2x+30^0\right)=sin\left(-x+30^0\right)\)

=>\(cos\left(2x+30^0\right)=cos\left(60^0+x\right)\)

=>\(\left[{}\begin{matrix}2x+30^0=x+60^0+k\cdot360^0\\2x+30^0=-x-60^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=30^0+k\cdot360^0\\3x=-90^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=30^0+k\cdot360^0\\x=-30^0+k\cdot120^0\end{matrix}\right.\)

26 tháng 11 2022

Chọn D

21 tháng 8 2017

Từ (3 - x) (4 + x) tại sao suy ra 12 + 3x - 4x - x

Xem lại phần đó

á nhầm nhầm , tks nha

a: Sửa đề: sin x=4/5

cosx=-3/5; tan x=-4/3; cot x=-3/4

b: 270 độ<x<360 độ

=>cosx>0

=>cosx=1/2

tan x=căn 3; cot x=1/căn 3

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Thay tọa độ điểm O, A, B vào F(x;y) ta được:

F(0;0)=2.0+3.0=0

F(150;0)=2.150+3.0=300

F(0;150)=2.0+3.150=450.

b) Lấy một điểm bất kì trong miền tam giác OAB.

Vì miền OAB là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\) nên mọi điểm (x;y) thuộc miền OAB thỏa mãn \(x \ge 0\).

Vì miền OAB là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\) nên mọi điểm (x;y) thuộc miền OAB thỏa mãn \(y \ge 0\).

Vậy \(x \ge 0\) và \(y \ge 0\).

=> \(F\left( {x;y} \right) = 2x + 3y \ge 2.0 + 3.0 = 0\)

Vậy giá trị nhỏ nhất của F(x;y) trên miền OAB là 0.

c) Vì miền OAB là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 150\end{array} \right.\) nên mọi điểm (x;y) thuộc miền OAB thỏa mãn \(x + y \le 150\)

Như vậy với mỗi điểm trong miền tam giác OAB thì đều có tổng \(x + y \le 150\)

Quan sát miền OAB ta thấy điểm B(0;150) là điểm có tung độ lớn nhất nên mọi điểm (x;y) thuộc miền OAB đều có \(y \le 150\).

Vậy ta có: \(F\left( {x;y} \right) = 2x + 3y\)\( = 2.\left( {x + y} \right) + y\)\( \le 2.150 + 150 = 450\)

Dấu “=” xảy ra khi x+y=150 và y=150. Hay x=0, y=150.

Giá trị lớn nhất trên miền OAB là 450 tại điểm B.