Trong mặt phẳng tọa độ Oxy, cho u → = − 1 ; x , v → = 2 ; 4 . Hai vectơ này có độ dài bằng nhau khi và chỉ khi
A. x = 19
B. x = - 19
C. x = 21
D. x ∈ − 19 ; 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
\(\overrightarrow{u}=2.\overrightarrow{a}+\overrightarrow{b}=\left(-1.2+3;2.2-2\right)=\left(1;2\right)\)
Ta có: u → = ( − 1 ) 2 + x 2 = 1 + x 2 ; v → = 2 2 + 4 2 = 20
Để hai vecto này có độ dài bằng nhau khi và chỉ khi: 1 + x 2 = 20
⇔ 1 + x 2 = 20 ⇔ x 2 = 19 ⇔ x = ± 19
Chọn D.