K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

Tọa độ giao điểm là nghiệm của hệ phương trình

x 2 + ​ y 2 − 6 x − 4 y + ​ 9 = 0 x 2 + ​ y 2 − 2 x − 8 y + ​ 13 = 0 ⇔ x 2 + ​ y 2 − 6 x − 4 y + ​ 9 = 0 − 4 x + ​ 4 y     − 4 = 0 ⇔ x 2 + ​ y 2 − 6 x − 4 y + ​ 9 = 0       ( 1 ) ​ x − y    + ​ 1 = 0                                     ( 2 ) ​

Từ (2) suy ra:  y = x+ 1 thay  vào (1) ta được:

  x 2 +   ( x +   1 ) 2     -   6 x   –   4 ( x +   1 )   +   9     =   0     x 2   +   x 2     +   2 x   +   1   -     6 x   -     4 x   –   4 +   9   = 0

2 x 2   –   8 x   +   6   =   0  

Vậy 2 đường tròn đã cho cắt  nhau tại 2 điểm là (1; 2) và (3;4).

ĐÁP ÁN B

12 tháng 12 2020

mk copy trên trang này

https://lazi.vn/edu/exercise/311935/cho-cac-so-thoa-man-2x-3y-13-tim-gia-tri-nho-nhat-cua-q

NV
12 tháng 12 2020

\(2x+3y=13\Rightarrow y=\dfrac{13-2x}{3}\)

\(Q=x^2+\left(\dfrac{13-2x}{3}\right)^2=\dfrac{13}{9}x^2-\dfrac{52}{9}x+\dfrac{169}{9}\)

\(Q=\dfrac{13}{9}\left(x-2\right)^2+13\ge13\)

\(Q_{min}=13\) khi \(\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

31 tháng 10 2021

a: \(=\left(x-y\right)\left(x+y\right)\)

\(=74\cdot100=7400\)

c: \(=\left(x+2\right)^3\)

\(=10^3=1000\)

31 tháng 10 2021

a) \(=\left(x-y\right)\left(x+y\right)\)

    Thay \(x=87;y=13\) ta đc:   \(\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)

b)\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

   Thay \(x=10;y=-1\) ta đc:

    \(10^3-\left(-1\right)^3=1000-1=999\)

c)\(=\left(x+2\right)^3\)

   Thay \(x=8\) ta đc: \(\left(8+2\right)^3=10^3=1000\)

d)\(=x^2-8x+16+1=\left(x-4\right)^2+1\)

   Thay \(x=104\) ta đc: \(\left(104-4\right)^2+1=100^2+1=10001\)

Ta có: \(x^2-y^2-13\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y\right)-13\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-13\right)\)

26 tháng 8 2021

`a)x^2-2x+2+4y^2+4y`

`=x^2-2x+1+4y^2+4y+1`

`=(x-1)^2+(2y+1)^2`

`b)4x^2+y^2+12x+4y+13`

`=4x^2+12x+9+y^2+4y+4`

`=(2x+3)^2+(y+2)^2`

`c)x^2+17+4y^2+8x+4y`

`=x^2+8x+16+4y^2+4y+1`

`=(x+4)^2+(2y+1)^2`

`d)4x^2-12xy+y^2-4y+13`

`=4x^2-12x+9+y^2-4y+4`

`=(2x-3)^2+(y-2)^2`

26 tháng 8 2021

a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)

b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)

c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)

d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)

17 tháng 12 2021

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2+y^2}{4+9}=\dfrac{13}{13}=1\\ \Rightarrow\left\{{}\begin{matrix}x^2=4\\y^2=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm3\end{matrix}\right.\)

21 tháng 8 2023

Bài 13:

a) \(501^2\)

\(=\left(500+1\right)^2\)

\(=500^2+2\cdot500\cdot1+1^2\)

\(=250000+1000+1\)

\(=251001\)

b) \(88^2+24\cdot88+12^2\)

\(=88^2+2\cdot12\cdot88+12^2\)

\(=\left(88+12\right)^2\)

\(=100^2\)

\(=10000\)

c) \(52\cdot48\)

\(=\left(50+2\right)\left(50-2\right)\)

\(=50^2-2^2\)

\(=2500-4\)

\(=2496\)

Bài 14:

a) \(P=\left(2x-1\right)\left(4x^2+2x+1\right)+\left(x+1\right)\left(x^2-x+1\right)\)

\(P=\left(2x\right)^3-1+x^3+1\)

\(P=8x^3+x^3\)

\(P=9x^3\)

b) \(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)+2y^3\)

\(Q=x^3-y^3-x^3-y^3+2y^3\)

\(Q=-2y^3+2y^3\)

\(Q=0\)

21 tháng 8 2023

Bài `14`

`a. P = ( 2x - 1 ) ( 4x^2 + 2x + 1 ) + ( x + 1 ) ( x^2 -x+1)`

`=(2x)^3-1^3 + x^3+1^3`

`=8x^3-1+x^3+1`

`= 9x^3`

__

`b, Q = ( x - y ) ( x^2 + xy + y^2 ) - ( x + y ) ( x^2 - xy + y^2)+2y^3`

`=x^3-y^3 -(x^3+y^3)+2y^3`

`=x^3-y^3 -x^3-y^3+2y^3`

`= 0`

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)

\(C=x^2+y^2+4x-6y+1\)

\(=x^2+4x+4+y^2-6y+9-12\)

\(=\left(x+2\right)^2+\left(y-3\right)^2+1\)

\(=30^2+10^2+1\)

=1001

22 tháng 12 2017

Vì x và y là hai đại lượng tỉ lệ thuận nên  x 1 x 2 = y 1 y 2  hay

  y 1 1 3 = 12 1 6 ⇒ y 1 = 24

Đáp án cần chọn là A