Cho biểu thức: A = \(\dfrac{x-1}{\sqrt{x}}\) : (\(\dfrac{\sqrt{x}-1}{\sqrt{x}}\) + \(\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\)) với x > 0; x ≠ 1
1) Rút gọn A
2) Tìm x để A . \(\sqrt{x}\)= 25
3) Chứng minh A > 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(P=\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)\(P=\left(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)
\(P=\dfrac{2}{x+\sqrt{x}+1}\)
b) Mà với \(x\ge0\) và \(x\ne1\) thì
\(x+\sqrt{x}+1\ge0\) và \(2>0\) nên \(P>0\)
a: \(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2}=\dfrac{2}{x+\sqrt{x}+1}\)
b: x+căn x+1+1>=1>0
2>0
=>P>0 với mọi x thỏa mãn x>=0 và x<>1
a: Khi x=25 thì \(A=\dfrac{5+1}{5-2}=\dfrac{6}{3}=2\)
b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1-\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+4}{x-\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1-\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)-\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1-x-\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=-\dfrac{3}{\sqrt{x}-2}\)
c: P=B:A
\(=\dfrac{-3}{\sqrt{x}-2}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=-\dfrac{3}{\sqrt{x}+1}\)
P<-1
=>P+1<0
=>\(\dfrac{-3+\sqrt{x}+1}{\sqrt{x}+1}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
mà x nguyên
nên \(x\in\left\{0;1;2;3\right\}\)
\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)
\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế
1: Khi x=9 thì \(A=\dfrac{3+1}{3-1}=\dfrac{4}{2}=2\)
2: \(P=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
3: 2P=2*căn x+5
=>\(\dfrac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)
=>\(2x+5\sqrt{x}-2\sqrt{x}-2=0\)
=>\(2x+3\sqrt{x}-4=0\)
=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)
=>\(2\sqrt{x}-1=0\)
=>x=1/4
\(a,M=\left(\dfrac{\sqrt{x}+2}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{x+3}{x-1}\right)\\ =\left(\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}+1-\sqrt{x}\left(\sqrt{x}-1\right)+x+3}{x-1}\right)\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1-x+\sqrt{x}+x+3}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{2\sqrt{x}+4}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{2\left(\sqrt{x}+2\right)}\\ =\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
`b,` Để `M>1` Thì :
\(\dfrac{\sqrt{x}+1}{2\sqrt{x}}>1\\ \Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}}-1>0\\ \Leftrightarrow\dfrac{\sqrt{x}+1-2\sqrt{x}}{2\sqrt{x}}>0\\ \Leftrightarrow\dfrac{-\sqrt{x}+1}{2\sqrt{x}}>0\)
\(\Leftrightarrow-\sqrt{x}+1>0\) `(` Vì \(2\sqrt{x}>0\) do \(x>0\) `)`
\(\Leftrightarrow-\sqrt{x}>-1\\ \Rightarrow x< 1\)
Sửa đề: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2}{x-1}\)
`a,`
\(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}-1}\\ =\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ =\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{4}{\sqrt{x}+1}\)
`b,` Để `A *B<0` ta có :
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{4}{\sqrt{x}+1}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-1}< 0\\ \Leftrightarrow\sqrt{x}-1< 0\left(vì.4>0\right)\\ \Leftrightarrow\sqrt{x}< 1\\ \Leftrightarrow0\le x< 1\)
Kết hợp với đkxđ ta có : \(0< x< 1\)
đề hơi sai, sửa này mới đúng nhaa
a) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
B =\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{x-1}\right)\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
= \(\dfrac{x+2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
= \(\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
= \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) (đpcm)
b, x = \(4-\sqrt{12}\) = \(\left(\sqrt{3}-1\right)^2\) => \(\sqrt{x}=\sqrt{3}-1\) (1)
Thay (1) vào B, ta được : \(B=\dfrac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-2}{\sqrt{3}}\)
c, Để \(\sqrt{x}+1\ge2x-2\sqrt{x}-3\)
<=> \(2x-3\sqrt{x}-4\le0\)
xem lại đề hoặc nếu đề chuẩn rồi í thì c pt thành nhân tử rồi lấy trong khoảng (có lấy dấu bằng) =(( chứ đà này chuẩn bị rối
1) \(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(A=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(A=\dfrac{x-1}{\sqrt{x}}:\dfrac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}\)
\(A=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\cdot\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
b) Ta có:
\(A\cdot\sqrt{x}=25\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\cdot\sqrt{x}=25\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=25\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=5^2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=5\\\sqrt{x}+1=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=16\\\sqrt{x}=-6\text{(vô lý)}\end{matrix}\right.\)
c) Ta xét hiệu:
\(A-4=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}-4\)
\(A-4=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}-\dfrac{4\sqrt{x}}{\sqrt{x}}\)
\(A-4=\dfrac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}}\)
\(A-4=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}\)
\(A-4=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
Với \(x>0\) thì \(\left(\sqrt{x}-1\right)>0\) và \(\sqrt{x}>0\)
\(\Rightarrow\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)
Nên A > 4 (đpcm)
1: \(A=\dfrac{x-1}{\sqrt{x}}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1+1-\sqrt{x}}\)
\(=\dfrac{\left(x-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
2: A*căn x=25
=>(căn x+1)^2=25
=>căn x+1=5
=>x=16
3: \(A-4=\dfrac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)
=>A>4