Cho \(M=x^2+y^2+2z^2+t^2\); với x, y, z, t là số tự nhiên. Hãy tìm giá trị nhỏ nhất của M và các giá trị tương ứng của x, y, z, t biết rằng: \(\left\{{}\begin{matrix}x^2-y^2+t^2=21\\x^2+3y^2+4z^2=101\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $x+y+z=0$ nên $x+y=-z$. Do đó:
$M=2(x^3+y^3)+2z(z^2-3xy)$
$=2[(x+y)^3-3xy(x+y)]+2z^3-6xyz$
$=2[(-z)^3+3xyz]+2z^3-6xyz=-2z^3+6xyz+2z^3-6xyz=0$
Lời giải:
\(\frac{1}{x^2}=1-\frac{1}{y^2}-\frac{1}{z^2}<1\Rightarrow x^2-1>0\)
\(P=\frac{y^2z^2}{x(y^2+z^2)}+\frac{x^2z^2}{y(x^2+z^2)}+\frac{x^2y^2}{z(x^2+y^2)}\)
\(=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{x^2}+\frac{1}{z^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)
\(=\frac{1}{x(1-\frac{1}{x^2})}+\frac{1}{y(1-\frac{1}{y^2})}+\frac{1}{z(1-\frac{1}{z^2})}\)
\(=\frac{x}{x^2-1}+\frac{y}{y^2-1}+\frac{z}{z^2-1}\)
Xét đánh giá sau:
\(\frac{x}{x^2-1}-\frac{3\sqrt{3}}{2x^2}=\frac{(x-\sqrt{3})^2(2x+\sqrt{3})}{2x^2(x^2-1)}\geq 0, \forall x^2>1\)
\(\Rightarrow \frac{x}{x^2-1}\geq \frac{3\sqrt{3}}{2x^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow P=\frac{x}{x^2-1}+\frac{y}{y^2-1}+\frac{z}{z^2-1}\geq \frac{3\sqrt{3}}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3\sqrt{3}}{2}\)
Vậy \(P_{\min}=\frac{3\sqrt{3}}{2}\Leftrightarrow x=y=z=\sqrt{3}\)
SOS get it <(")
\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)->\left(a;;bc\right)\text{for}\left(a;b;c>0\text{and}a^2+b^2+c^2=1\right)\)
\(\text{Khido}P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
\(\text{Ta se cm}\sum_{cyc}\frac{a}{b^2+c^2}\ge\frac{3\sqrt{3}}{2}\)\(\text{Viet lai BDT can chung minh}\)
\(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}}{2\sqrt{x^2+y^2+z^2}}\)
\(\text{Chuan hoa}a^2+b^2+c^2=3\text{ta can cm:}\)
\(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{3-a^2}-\frac{1}{2}+\frac{b}{3-b^2}-\frac{1}{2}+\frac{c}{3-c^2}-\frac{1}{2}\ge0\)
\(\Leftrightarrow\sum_{cyc}\left(\frac{a}{3-a^2}-\frac{1}{2}-\frac{1}{2}\left(x^2-1\right)\right)\ge0\)
\(\Leftrightarrow\frac{a\left(a+2\right)\left(a-1\right)^2}{3-a^2}+\frac{b\left(b+2\right)\left(b-1\right)^2}{3-b^2}+\frac{c\left(c+2\right)\left(c-1\right)^2}{3-c^2}\ge0\)
C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)
\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)
\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)
Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);
\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)
Ta có: \(x^2-2y=-1\) \(\Leftrightarrow\) \(x^2-2y+1=0\) (1)
\(y^2+1=2z\) \(\Leftrightarrow y^2-2z+1=0\) (2)
\(2z^2=4x-2\) \(\Leftrightarrow2z^2-4x+2=0\)(3)
Cộng (1)(2)(3) theo vế:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)
=> x-1=0; y-1=0; z-1=0
=>x=y=z
=>\(x^{2015}+y^{2015}+z^{2015}=1+1+1=3\)(đpcm)
\(\left\{{}\begin{matrix}x^2-y^2+t^2=21\\x^2+3y^2+4z^2=101\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
(1)+(2)\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2+4z^2+t^2=122\\x,y,z,t\in N\end{matrix}\right.\) \(\Rightarrow t=2n\)
\(\Leftrightarrow x^2+y^2+2z^2+2n^2=61\) (3)
\(\Leftrightarrow M=61+2n^2\)
(1) trừ (2)\(\Leftrightarrow y^2+z^2-n^2=20\)
n=0 ; y=2; z=4; x=5
=> Min M =61 khi n=0
(x;y;z;t)=(5;2;4;0)