Tìm giá trị của phân thức A=\(\frac{x-y}{x+y}\); trong đó x > y > 0 và biết rằng \(x^2+y^2=3\frac{1}{3}xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rút gọn cả 3 phân thức nhé
rồi tìm điều kiện xác định
và tính giá trị để biểu thức =0 nha
mk gợi ý thế tự làm nha
k mk nhé cảm ơn
A. x^2-5x=x(x-5)
óx≠0 óx≠0
óx-5 óx≠5
Khi x≠0,x≠5 thì phân thức đã cho có giá trị xác định
B. (x^2-10*x+25)/(x^2-5*x)
=[(x-5)^2]/x(x-5)
=(x-5)/x
Với x=1007 thì phân thúc y có giá trị là (1007-5)/1007=1002/1007 tương đương 0.995034756703079
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
\(1,\\ a,\dfrac{x^2}{x+1}+\dfrac{x}{x+1}=\dfrac{x^2+x}{x+1}=\dfrac{x\left(x+1\right)}{x+1}=x\)
\(b,\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\dfrac{2x}{x+y}=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}=\dfrac{2x\left(x^2+2xy+y^2\right)}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{x}{x-y}\)
ĐKXĐ : x2-5x khác 0
<=>x.(x-5) khác 0
<=> x khác 0 và x khác 5
a)
\(\frac{x^2-10x+25}{x^2-5x}=0\Rightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\)
<=>x-5=0
<=>x=5
Mà x khác 5 nên không có x nào thỏa mãn phân thức bằng 0
b)\(\frac{x^2-10x+25}{x^2-5x}=\frac{5}{2}\Leftrightarrow\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{5}{2}\Leftrightarrow\frac{x-5}{x}=\frac{5}{2}\Leftrightarrow\frac{2.\left(x-5\right)}{2x}=\frac{5x}{2x}\)
\(\Rightarrow2\left(x-5\right)=5x\Leftrightarrow2x-10=5x\Leftrightarrow-3x=10\Leftrightarrow x=-\frac{10}{3}\)
c) \(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{x-5}{x}=1-\frac{5}{x}\)
Để phân thức trên nguyên thì : 1-5/x là số nguyên
=>5/x là số nguyên
=>x thuộc Ư(5)={1;-1;5;-5}
Mà x khác 5 nên: x={1;-1;-5}
Vậy x={1;-1;-5}
\(x^2+y^2=3\frac{1}{3}xy\)hay \(x^2+y^2=\frac{10}{3}xy\)
\(\Rightarrow x^2+2xy+y^2=\frac{16}{3}xy\)\(\Rightarrow\left(x+y\right)^2=\frac{16}{3}xy\)
tương tự : \(\left(x-y\right)^2=\frac{4}{3}xy\)
\(\Rightarrow\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{1}{4}\Rightarrow\orbr{\begin{cases}\frac{x-y}{x+y}=\frac{1}{2}\\\frac{x-y}{x+y}=\frac{-1}{2}\end{cases}}\)
vì x > y > 0 nên x - y > 0 \(\Rightarrow\frac{x-y}{x+y}>0\)
Vậy \(\frac{x-y}{x+y}=\frac{1}{2}\)
Xét\(x^2+2xy+y^2=\frac{10}{3}xy+2xy=\frac{16}{3}xy\)
\(x^2-2xy+y^2=\frac{10}{3}xy-2xy=\frac{4}{3}xy\)
Từ đó ta được:
\(\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{\left(\frac{4}{3}xy\right)}{\left(\frac{16}{3}xy\right)}=\frac{1}{4}\)
\(\Rightarrow\sqrt{\frac{\left(x-y\right)^2}{\left(x+y\right)^2}}=\frac{1}{2}\Rightarrow\left|\frac{x-y}{x+y}\right|=\frac{1}{2}\)
Hihi
đến đây bạn tự làm nốt nha
^-^ Học tốt