Cho góc nhọn xOy.Trên tia Ox lấy điểm A (A ¹ O); trên tia Oy lấy điểm B
(B khác O) sao cho OA = OB. Kẻ AC \(\perp\) Oy (C \(\in\) Oy); BD\(\perp\)Ox (D \(\in\) Ox).Gọi I là giao điểm của AC và BD.
a. Chứng minh D AOC = D BOD
b. Chứng minh D AIB cân
c. So sánh IC và IA
a) Xét \(\Delta AOC\) và \(\Delta BOD\) có:
\(\widehat{ACO}=\widehat{BDO}=90^o;\widehat{AOB}:chung;OA=OB\)
\(\Rightarrow\) \(\Delta AOC\) = \(\Delta BOD\) \(\Rightarrow\) \(\widehat{OAC}=\widehat{OBD}\)
b) Xét \(\Delta OAB\) có : OA = OB \(\Rightarrow\) \(\Delta OAB\) cân tại O
\(\Rightarrow\) \(\widehat{OAB}=\widehat{OBA}\)
Có \(\widehat{OAC}+\) \(\widehat{CAB}=\widehat{OAB}\) ; \(\widehat{OBD}+\widehat{DBA}=\widehat{OBA}\)
mà \(\widehat{OAB}=\widehat{OBA}\) ; \(\widehat{OAC}=\widehat{OBD}\)
\(\Rightarrow\widehat{CAB}=\widehat{DBA}\Rightarrow\Delta IAB\) cân tại I
\(\Rightarrow IA=IB\)
c) Xét \(\Delta IBC\) vuông tại C
=> IB > IC mà IB = IA
=> IA > IC
Cho góc nhọn xOy.Trên tia Ox lấy điểm A (A \(\ne\) O); trên tia Oy lấy điểm B
(B khác O) sao cho OA = OB. Kẻ AC ⊥ Oy (C ∈ Oy); BD⊥Ox (D ∈ Ox).Gọi I là giao điểm của AC và BD.
a. Chứng minh \(\Delta\) AOC = \(\Delta\) BOD
b. Chứng minh \(\Delta\) AIB cân
c. So sánh IC và IA