Cho a, b, c là các số tự nhiên khác 0 sao cho p = ab + c; q = bc + a; r = ca + b là các số
nguyên tố. Chứng minh rằng hai trong các số p, q, r phải bằng nhau.
Bài này khó quá giúp mình luôn nha mình là học sinh mới đăng kí.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giúp với bà con ơi. Khó quá trời lun !!!!!!!!!!!!!!!!!!!!!!!!!
a + x = a
x = a - a
x = 0
a + x > a
x > a - a
x > 0
a + x < a
x < a - a
x < 0
a) a + x = a ó x = 0. Vậy x ∈ {0}
b) a + x > a ó x>0. Vậy x ∈ N*
c) a + x < a ó x<0. Vì x ∈ ¥ nên không có giá trị nào của x thỏa mãn. Vậy x = ∅
a + x = a
x = a - a
x = 0
a + x > a
x > a - a
x > 0
a + x < a
x < a - a
x < 0
Giúp với bà con ơi. Khó quá trời lun !!!!!!!!!!!!!!!!!!!!!!!!!
goi 3 do can tim la a , b ,c ( a,b,c la so tu nhien )
the de bai ta co : 1/a +1/b+1/c la so tu nhien
vi 1/a , 1/b ,1/c <=1 vay 1/a +1/b+1/c <=3
xet cac th :
th1 : 1/a +1/b+1/c =3 => a=b=xc=1 la nghiem
th2: 1/a +1/b+1/c=2 => a*b+b*c+a*c=2*a*b*c ( 1 )
gia su a = min (a,b,c ) => b*c= max ( a*b ,b*c ,a*c )
neu a=> 2 vay 2*a*b*c => 4*b*c > a*b+b*c+a*c vay a=1 hoac 2
+) voi a=1 ( 1 ) <=> 1+1/b+1/c =2
=> 1/b+1/c = 1 => b+c =b*c => b=c = 2
+) voi a=1 (1) 1/2+1/b+1/c =2
=> 1/b+1/c = 3/2 => b=1 x=2 hoac b=2 c=1
th3: 1/a +1/b+1/c=1 => a*b+b*c+a*c=a*b*c ( 2 )
gia su a = min (a,b,c ) => b*c= max ( a*b ,b*c ,a*c )
neu a=> 4 vay a*b*c => 4*b*c > a*b+b*c+a*c vay a=1,2 hoac 3
2.
Vì 0<a<b<c nên tổng 2 số nhỏ nhất trong tập hợp A là
(abc)+(acb)=(100a+10b+c)+(100a+10c+b)
=200a+11b+11c=200a+11(b+c).
Vậy 200a+11(b+c)=488 (*)
Từ (*) =>a<3 =>a chỉ có thể là 1 hoặc 2
+Nếu a=1 =>11(b+c)=288 => vô nghiệm vì b+c=288/11 không nguyên
+Nếu a=2 =>11(b+c)=88 =>b=3; c=5 (vì a<b<c)
=>a+b+c=2+3+5 = 10.